Регулировка постоянного напряжения в усилителе. Регулировка усилителя низкой частоты

21.03.2021 Приставки

Конечно, охватить все случаи, встречающиеся в практике ремонта, не представляется возможным, однако, если следовать определенному алгоритму, то в подавляющем большинстве случаев удается восстановить работоспособность устройства за вполне приемлемое время. Данный алгоритм был выработан мною по опыту ремонта около полусотни различных УМЗЧ, от простейших, на несколько ватт или десятков ватт, до концертных «монстров» по 1…2 кВт на канал, большинство из которых поступало на ремонт без принципиальных схем .

Главной задачей ремонта любого УМЗЧ является локализация вышедшего из строя элемента, повлекшего за собой неработоспособность как всей схемы, так и выход из строя других каскадов. Поскольку в электротехнике бывает всего 2 типа дефектов:

  1. Наличие контакта там, где его быть не должно;
  2. Отсутствие контакта там, где он должен быть,

то «сверхзадачей» ремонта является нахождение пробитого или оборванного элемента. А для этого – отыскать тот каскад, где он находится. Дальше – «дело техники». Как говорят врачи: «Правильный диагноз - половина лечения».

Перечень оборудования и инструментов, необходимых (или по крайней мере крайне желательных) при ремонте:

  1. Отвертки, бокорезы, пассатижи, скальпель (нож), пинцет, лупа – т.е., минимальный обязательный набор обычного монтажного инструмента.
  2. Тестер (мультиметр).
  3. Осциллограф.
  4. Набор ламп накаливания на различные напряжения – от 220 В до 12 В (по 2 шт.).
  5. Низкочастотный генератор синусоидального напряжения (весьма желательно).
  6. Двухполярный регулируемый источник питания на 15…25(35) В с ограничением выходного тока (весьма желательно).
  7. Измеритель емкости и эквивалентного последовательного сопротивления (ESR ) конденсаторов (весьма желательно).
  8. И, наконец, самый главный инструмент – голова на плечах (обязательно!).

Рассмотрим данный алгоритм на примере ремонта гипотетического транзисторного УМЗЧ с биполярными транзисторами в выходных каскадах (рис.1), не слишком примитивного, но и не очень сложного. Такая схема является наиболее распространенной «классикой жанра». Функционально он состоит из следующих блоков и узлов:

  • двухполярный источник питания (не показан);
  • входной дифференциальный каскад на транзисторах VT 2, VT 5 с токовым зеркалом на транзисторах VT 1 и VT 4 в их коллекторных нагрузках и стабилизатором их эмиттерного тока на VT 3;
  • усилитель напряжения на VT 6 и VT 8 в каскодном включении, с нагрузкой в виде генератора тока на VT 7;
  • узел термостабилизации тока покоя на транзисторе VT 9;
  • узел защиты выходных транзисторов от перегрузки по току на транзисторах VT 10 и VT 11;
  • усилитель тока на комплементарных тройках транзисторов, включенных по схеме Дарлингтона в каждом плече (VT 12 VT 14 VT 16 и VT 13 VT 15 VT 17).
  1. Первым пунктом любого ремонта является внешний осмотр сабжа и его обнюхивание (!). Уже одно это позволяет иногда хотя бы предположить сущность дефекта. Если пахнет паленым – значит, что-то явно горело.
  2. Проверка наличия сетевого напряжения на входе: тупо перегорел сетевой предо­хранитель, разболталось крепление проводов сетевого шнура в вилке, обрыв в сетевом шнуре и т.п. Этап – банальнейший по своей сущности, но на котором ремонт заканчивается примерно в 10% случаев.
  3. Ищем схему на усилитель. В инструкции, в Интернете, у знакомых, друзей и т.п. К сожалению, все чаше и чаще в последнее время – безуспешно. Не нашли – тяжко вздыхаем, посыпаем голову пеплом и принимаемся за вырисовывание схемы по плате. Можно этот этап и пропустить. Если неважен результат. Но лучше не пропускать. Муторно, долго, противно, но – «Надо, Федя, надо…» ((С) «Операция «Ы»…).
  4. Вскрываем сабж и производим внешний осмотр его «потрохов». Применяем лупу, если нужно. Можно увидеть разрушенные корпуса п/п приборов, потемневшие, обуглившиеся или разрушенные резисторы, вздутые электролитические конденсаторы или потеки электролита из них, оборванные проводники, дорожки печатной платы и т.п. Если таковое найдено – это еще не повод для радости: разрушенные детали могут быть следствием выхода из строя какой-нибудь «блошки», которая визуально цела.
  5. Проверяем блок питания. Отпаиваем провода, идущие от БП к схеме (или отсоединяем разъем, если он есть) . Вынимаем сетевой предохранитель и к контактам его держателя подпаиваем лампу на 220 В (60…100 Вт). Она ограничит ток первичной обмотки трансформатора, равно как и токи во вторичных обмотках.

Включаем усилитель. Лампа должна мигнуть (на время зарядки конденсаторов фильтра) и погаснуть (допускается слабое свечение нити). Это значит, что К.З. по первичной обмотке сетевого трансформатора нет, как нет явного К.З. в его вторичных обмотках. Тестером на режиме переменного напряжения измеряем напряжение на первичной обмотке трансформатора и на лампе. Их сумма должна быть равна сетевому. Измеряем напряжения на вторичных обмотках. Они должны быть пропорциональными тому, что измерено фактически на первичной обмотке (относительно номинального). Лампу можно отключать, ставить предохранитель на место и включать усилитель прямо в сеть. Повторяем проверку напряжений на первичной и вторичной обмотках. Соотношение (пропорция) между ними должно быть таким же, как при измерении с лампой.

Лампа горит постоянно в полный накал – значит, имеем К.З. в первичной цепи: проверяем целостность изоляции проводов, идущих от сетевого разъема, тумблер питания, держатель предохранителя. Отпаиваем один из поводов, идущих на первичную обмотку трансформатора. Лампа погасла – скорее всего вышла из строя первичная обмотка (или межвитковое замыкание).

Лампа горит постоянно в неполный накал – скорее всего, дефект во вторичных обмотках или в подключенных к ним цепях. Отпаиваем по одному проводу, идущему от вторичных обмоток к выпрямителя(м). Не перепутать, Кулибин! Чтобы потом не было мучительно больно от неправильной подпайки назад (промар­кировать, например, с помощью кусочков липкой малярной ленты). Лампа погасла – значит, с трансформатором все в порядке. Горит – снова тяжко вздыхаем и либо ищем ему замену, либо перематываем.

6. Определились, что трансформатор в порядке, а дефект в выпрямителях или конденсаторах фильтра. Прозваниваем диоды (желательно отпаять под одному проводу идущему к их выводам, либо выпаять, если это интегральный мост) тестером в режиме омметра на минимальном пределе. Цифровые тестеры в этом режиме часто врут, поэтому желательно использовать стрелочный прибор. Лично я давно пользуюсь прозвонкой-«пищалкой» (рис. 2, 3). Диоды (мост) пробиты или оборваны – меняем. Целые – «звоним» конденсаторы фильтра. Перед измерением их надо разрядить (!!!) через 2-ваттный резистор сопротивлением около 100 Ом. Иначе можно сжечь тестер. Если конденсатор цел – при замыкании стрелка сначала отклоняется до максимума, а потом довольно медленно (по мере заряда конденсатора) «ползет» влево. Меняем подключение щупов. Стрелка сначала зашкаливает вправо (на конденсаторе остался заряд от предыдущего измерения) а потом опять ползет влево. Если есть измеритель емкости и ESR , то весьма желательно использовать его. Пробитые или оборванные конденсаторы меняем.


7. Выпрямители и конденсаторы целые, но на выходе блока питания стои́т стабилизатор напряжения? Не беда. Между выходом выпрямителя(ей) и входом(ами) стабилизатора(ов) включаем лампу(ы) (цепочку(и) ламп) на суммарное напряжение близкое к указанному на корпусе конденсатора фильтра. Лампа загорелась – дефект в стабилизаторе (если он интегральный), либо в цепи формирования опорного напряжения (если он на дискретных элементах), либо пробит конденсатор на его выходе. Пробитый регулирующий транзистор определяется прозваниванием его выводов (выпаять!).

8. С блоком питания все в порядке (напряжения на его выходе симметричные и номинальные)? Переходим к самому главному – собственно усилителю. Подбираем лампу (или цепочки ламп) на суммарное напряжение, не ниже номинального с выхода БП и через нее (них) подключаем плату усилителя. Причем, желательно к каждому из каналов по отдельности. Включаем. Загорелись обе лампы – пробиты оба плеча выходных каскадов. Только одна – одно из плеч. Хотя и не факт.

9. Лампы не горят или горит только одна из них. Значит, выходные каскады, скорее всего, целые. К выходу подключаем резистор на 10…20 Ом. Включаем. Лампы должны мигнуть (на плате обычно есть еще конденсаторы по питанию). Подаем на вход сигнал от генератора (регулятор усиления – на максимум). Лампы (обе!) зажглись. Значит, усилитель что-то усиливает, (хотя хрипит, фонит и т.п.) и дальнейший ремонт заключается в поиске элемента, выводящего его из режима. Об этом – ниже.

10. Для дальнейшей проверки лично я не использую штатный блок питания усилителя, а применяю 2-полярный стабилизированный БП с ограничением тока на уровне 0,5 А. Если такового нет – можно использовать и БП усилителя, подключенный, как было указано, через лампы накаливания. Только нужно тщательно изолировать их цоколи, чтобы случайно не вызвать КЗ и быть аккуратным, чтобы не разбить колбы. Но внешний БП – лучше. Заодно виден и потребляемый ток. Грамотно спроектированный УМЗЧ допускает колебания питающих напряжений в довольно больших пределах. Нам ведь не нужны при ремонте его супер-пупер параметры, достаточно просто работоспособности.

11. Итак, с БП всё в порядке. Переходим к плате усилителя (рис. 4). Перво-наперво надо локализовать каскад(ы) с пробитым(и)/оборванным(и) компонентом(ами). Для этого крайне желательно иметь осциллограф. Без него эффективность ремонта падает в разы. Хотя и с тестером можно тоже много чего сделать. Почти все измерения производятся без нагрузки (на холостом ходу). Допустим, что на выходе у нас «перекос» выходного напряжения от нескольких вольт до полного напряжения питания.

12. Для начала отключаем узел защиты, для чего выпаиваем из платы правые выводы диодов VD 6 и VD 7 (у меня в практике было три случая, когда причиной неработо­способности был выход из строя именно этого узла). Смотрим напряжение не выходе. Если нормализовалось (может быть остаточный перекос в несколько милливольт – это норма), прозваниваем VD 6, VD 7 и VT 10, VT 11. Могут быть обрывы и пробои пассивных элементов. Нашли пробитый элемент – меняем и восстанавливаем подключение диодов. На выходе ноль? Выходной сигнал (при подаче на вход сигнала от генератора) присутствует? Ремонт закончен.


Рис. 4.

Ничего с сигналом на выходе не изменилось? Оставляем диоды отключенными и идем дальше.

13. Выпаиваем из платы правый вывод резистора ООС (R 12 вместе с правым выводом C 6), а также левые выводы R 23 и R 24, которые соединяем проволочной пере­мычкой (показана на рис. 4 красным) и через дополнительный резистор (без нумерации, порядка 10 кОм) соединяем с общим проводом. Перемыкаем проволочной перемычкой (красный цвет) коллекторы VT 8 и VT 7, исключая конденсатор С8 и узел термостабилизации тока покоя. В итоге усилитель разъединяется на два самостоятельных узла (входной каскад с усилителем напряжения и каскад выходных повторителей), которые должны работать самостоятельно.

Смотрим, что имеем на выходе. Перекос напряжения остался? Значит, пробит(ы) транзистор(ы) «перекошенного» плеча. Выпаиваем, звоним, заменяем. Заодно проверяем и пассивные компоненты (резисторы). Наиболее частый вариант дефекта, однако должен заметить, что очень часто он является следствием выхода из строя какого-то элемента в предыдущих каскадах (включая узел защиты!). Поэтому последующие пункты все-таки желательно выполнить.

Перекоса нет? Значит, выходной каскад предположительно цел. На всякий случай подаем сигнал от генератора амплитудой 3…5 В в точку «Б» (соединения резисторов R 23 и R 24). На выходе должна быть синусоида с хорошо выраженной «ступенькой», верхняя и нижняя полуволны которой симметричны. Если они не симметричны – значит, «подгорел» (потерял параметры) какой-то из транзисторов плеча, где она ниже. Выпаиваем, звоним. Заодно проверяем и пассивные компоненты (резисторы).

Сигнала на выходе нет вообще? Значит, вылетели силовые транзисторы обоих плеч «насквозь». Печально, но придется выпаивать все и прозванивать с последующей заменой.

Не исключены и обрывы компонентов. Тут уж нужно включать «8-й инструмент». Проверяем, заменяем…

14. Добились симметричного повторения на выходе (со ступенькой) входного сигнала? Выходной каскад отремонтирован. А теперь нужно проверить работоспособность узла термостабилизации тока покоя (транзистор VT 9). Иногда наблюдается нарушение контакта движка переменного резистора R 22 с резистивной дорожкой. Если он включен в эмиттерной цепи, как показано на приведенной схеме, ничего страшного с выходным каскадом при этом произойти не может, т.к. в точке подключения базы VT 9 к делителю R 20– R 22 R 21 напряжение просто повышается, он приоткрывается больше и, соответственно, снижается падение напряжения между его коллектором и эмиттером. В выходном сигнале простоя появится ярко выраженная «ступенька».

Однако (очень даже нередко), подстроечный резистор ставится между коллектором и базой VT9. Крайне «дураконезащищенный» вариант! Тогда при потере контакта движка с резистивной дорожкой напряжение на базе VT9 снижается, он призакрывается и, соответственно, повышается падение напряжения между его коллектором и эмиттером, что ведет к резкому возрастанию тока покоя выходных транзисторов, их перегреву и, естественно, тепловому пробою. Еще более дурацкий вариант выполнения этого каскада – если база VT9 соединена только с движком переменного резистора. Тогда при потере контакта на ней может быть все, что угодно, с соответствующими последствиями для выходных каскадов.

Если есть возможность, сто́ит переставить R 22 в базо-эмиттерную цепь. Правда, при этом регулировка тока покоя станет выражено нелинейной от угла поворота движка, но IMHO это не такая уж и большая плата за надежность. Можно просто заменить транзистор VT 9 на другой, с обратным типом проводимости, если позволяет разводка дорожек на плате. На работу узла термостабилизации это никак не повлияет, т.к. он является двухполюсником и не зависит от типа проводимости транзистора.

Проверка этого каскада осложняется тем, что, как правило, соединения с коллекторами VT 8 и VT 7 сделаны печатными проводниками. Придется поднимать ножки резисторов и делать соединения проводочками (на рис. 4 показаны разрывы проводников). Между шинами положительного и отрицательного напряжений питания и, соответственно, коллектором и эмиттером VT 9 включаются резисторы примерно по 10 кОм (без нумерации, показаны красным) и замеряется падение напряжения на транзисторе VT 9 при вращении движка подстроечного резистора R 22. В зависимости от количества каскадов повторителей оно должно изменяться в пределах примерно 3…5 В (для «троек, как на схеме) или 2,5… 3,5 В (для «двоек»).

15. Вот и добрались мы до самого интересного, но и самого сложного – дифкаскада с усилителем напряжения. Они работают только совместно и разделить их на отдельные узлы принципиально невозможно.

Перемыкаем правый вывод резистора ООС R 12 с коллекторами VT 8 и VT 7 (точка « А », являющаяся теперь его «выходом»). Получаем «урезанный» (без выходных каскадов) маломощный ОУ, вполне работоспособный на холостом ходе (без нагрузки). Подаем на вход сигнал амплитудой от 0,01 до 1 В и смотрим, что будет в точке А . Если наблюдаем усиленный сигнал симметричной относительно земли формы, без искажений, значит данный каскад цел.

16. Сигнал резко снижен по амплитуде (мало усиление) – в первую очередь проверить емкость конденсатора(ов) С3 (С4, т.к. производители для экономии очень часто ставят только один полярный конденсатор на напряжение 50 В и больше, рассчитывая, что в обратной полярности он все равно будет работать, что не есть гут). При его подсыхании или пробое резко снижается коэффициент усиления. Если нет измерителя емкости – проверяем просто путем замены на заведомо исправный.

Сигнал перекошен – в первую очередь проверить емкость конденсаторов С5 и С9, шунтирующих шины питания предусилительной части после резисторов R17 и R19 (если эти RC-фильтры вообще есть, т.к. нередко они не ставятся).

На схеме приведены два распространенных варианта симметрирования нулевого уровня: резистором R 6 или R 7 (могут быть, конечно же, и другие), при нарушении контакта движка которых тоже может быть перекос выходного напряжения. Проверить вращением движка (хотя, если контакт нарушен «капитально», это может и не дать результата). Тогда попробовать перемкнуть пинцетом их крайние выводы с выводом движка.

Сигнал вообще отсутствует – смотрим, а есть ли он вообще на входе (обрыв R3 или С1, К.З. в R1, R2, С2 и т.п.). Только сначала нужно выпаять базу VT2, т.к. на ней сигнал будет очень маленьким и смотреть на правом выводе резистора R3. Конечно, входные цепи могут сильно отличаться от приведенных на рисунке – включать «8-й инструмент». Помогает.

17. Естественно, описать все возможные причинно-следственные варианты дефектов мало реально. Поэтому дальше просто изложу, как проверять узлы и компоненты данного каскада.

Стабилизаторы тока VT 3 и VT 7. В них возможны пробои или обрывы. Из платы выпаиваются коллекторы и замеряется ток между ними и землей. Естественно, сначала нужно рассчитать по напряжению на их базах и номиналам эмиттерных резисторов, каким он должен быть. (N . B .! В моей практике был случай самовозбуждения усилителя из-за чрезмерно большого номинала резистора R 10, поставленного изготовителем. Помогла подстройка его номинала на полностью работающем усилителе – без указанного выше разделения на каскады).

Аналогично можно проверить и транзистор VT 8: если перемкнуть коллектор-эмиттер транзистора VT 6, он также тупо превращается в генератор тока.

Транзисторы дифкаскада VT 2 V 5 T и токового зеркала VT 1 VT 4, а также VT 6 проверяются их прозвонкой после отпайки. Лучше замерить коэффициент усиления (если тестер – с такой функцией). Желательно подобрать с одинаковыми коэффициентами усиления.

18. Пару слов «не для протокола». Почему-то в подавляющем большинстве случаев в каждый последующий каскад ставят транзисторы все бо́льшей и бо́льшей мощности. В этой зависимости есть одно исключение: на транзисторах каскада усиления напряжения (VT 8 и VT 7) рассеивается в 3…4 раза бо́льшая мощность , чем на предрайверных VT 12 и VT 23 (!!!). Поэтому, если есть такая возможность, их сто́ит сразу же заменить на транзисторы средней мощности. Неплохим вариантом будет КТ940/КТ9115 или аналогичные импортные.

19. Довольно нередкими дефектами в моей практике были непропаи («холодная» пайка к дорожкам/«пятачкам» или плохое облуживание выводов перед пайкой) ножек компонентов и обломы выводов транзисторов (особенно в пластмассовом корпусе) непосред­ственно возле корпуса, которые очень трудно было увидеть визуально. Пошатать транзисторы, внимательно наблюдая за их выводами. В крайнем случае – выпаять и впаять заново.

Если проверили все активные компоненты, а дефект сохраняется – нужно (опять же, с тяжким вздохом), выпаять из платы хоть по одной ножке и проверить тестером номиналы пассивных компонентов. Нередки случаи обрывов постоянных резисторов без каких-либо внешних проявлений. Неэлектролитические конденса­торы, как правило, не пробиваются/обрываются, но всякое бывает…

20. Опять же, по опыту ремонта: если на плате видны потемневшие/обугленные резисторы, причем симметрично в обеих плечах, сто́ит пересчитать выделяемую на нем мощность. В житомирском усилителе «Dominator » производитель поставил в одном из каскадов резисторы по 0,25 Вт, которые регулярно горели (до меня было 3 ремонта). Когда я просчитал их необходимую мощность – чуть не упал со стула: оказалось, что на них должно рассеиваться по 3 (три!) ватта…

21. Наконец, все заработало… Восстанавливаем все «порушенные» соединения. Совет вроде бы и банальнейший, но сколько раз забываемый!!! Восстанавливаем в обратной последовательности и после каждого соединения проверяем усилитель на работоспособность. Нередко покаскадная проверка, вроде бы, показала, что все исправно, а после восстанов­ления соединений дефект опять «выползал». Последними подпаиваем диоды каскада токовой защиты.

22. Выставляем ток покоя. Между БП и платой усилителя включаем (если они были отключены ранее) «гирлянду» ламп накаливания на соответствующее суммарное напряжение. Подключаем к выходу УМЗЧ эквивалент нагрузки (резистор на 4 или 8 Ом). Движок подстроечного резистора R 22 устанавливаем в нижнее по схеме положение и на вход подаем сигнал от генератора частотой 10…20 кГц (!!!) такой амплитуды, чтобы на выходе выл сигнал не более 0,5…1 В. При таких уровне и частоте сигнала хорошо заметна «ступенька», которую трудно заметить на большом сигнале и малой частоте. Вращением движка R22 добиваемся ее устранения. При этом нити накала ламп должны немного светиться. Можно проконтролировать ток и амперметром, включив его параллельно каждой гирлянде ламп. Не сто́ит удивляться, если он будет заметно (но не более, чем в 1,5…2 раза в бо́льшую сторону) отличаться от того, что указано в рекомендациях по настройке – нам ведь важно не «соблюдение рекомендаций», а качество звучания! Как правило, в «рекомендациях» ток покоя значительно завышается, для гарантированного достижения запланированных параметров («по худшему»). Перемыкаем «гирлянды» перемычкой, повышаем уровень выходного сигнала до уровня 0,7 от максимального (когда начинается амплитудное ограничение выходного сигнала) и даем усилителю прогреться 20…30 минут. Этот режим является наиболее тяжелым для транзисторов выходного каскада – на них при этом рассеивается максимальная мощность. Если «ступенька» не появилась (при малом уровне сигнала), а ток покоя возрос не более, чем в 2 раза, настройку считаем законченной, иначе убираем «ступеньку» снова (как было указано выше).

23. Убираем все временные соединения (не забывать!!!), собираем усилитель окончательно, закрываем корпус и наливаем чарку, которую с чувством глубокого удовлетворения проделанной работой, выпиваем. А то работать не будет!

Конечно же, в рамках данной статьи не описаны нюансы ремонта усилителей с «экзотическими» каскадами, с ОУ на входе, с выходными транзисторами, включенными с ОЭ, с «двухэтажными» выходными каскадами и многое другое…

Поэтому ПРОДОЛЖЕНИЕ СЛЕДУЕТ

42 43 44 45 46 47 48 49 ..

Настройка и регулировка УЗЧ

Чтобы хорошо отрегулировать УЗЧ, нужно иметь ясное представление о назначении и роли всех входящих в него элементов, понимать физические процессы, происходящие в усилителях, и уметь грамотно пользоваться измерительными приборами.

После проверки работоспособности УЗЧ покаскадно проверяют режимы усилительных элементов (транзисторов - или микросхем) по постоянному току и приступают к настройке и регулировке усилителя. Задача настройки и регулировки УЗЧ состоит в том, чтобы с помощью определенных технологических и контрольных операций, например, установления оптимальных режимов работы отдельных элементов (транзисторов, микросхем), выявления и устранения неисправностей, обеспечить выпуск усилителей, соответствующих стандарту или ТУ.

Перед началом измерений проверяют мощность, потребляемую УЗЧ при отсутствии сигнала на его входе. Для этого переключатель переводят в положение II (см. рис. 65). Мощность, потребляемая УЗЧ, определяется вольтметром V и амперметром А, включенными в цепь питания усилителя. По показаниям этих приборов определяют потребляемый ток I0 и напряжение источника питания 11. Класс точности измерительных приборов должен быть не ниже 2,5. Потребляемая УЗЧ мощность рассчитывается по формуле: Рпотр = I0Еист

На вход УЗЧ чаще всего к соответствующим выводам разъема «Магнитофон» от звукового генератора подается номинальное напряжение сигнала на частоте 1000 Гц, соответствующее номинальной мощности в нагрузке. На выходе УЗЧ параллельно звуковой катушке громкоговорителя присоединяют измерительные приборы: электронный вольтметр 6, осциллограф 7 и измеритель нелинейных искажений 8.

Необходимо убедиться в правильности действия регуляторов усиления. Для этого регулятор громкости устанавливают в положение максимального усиления, а напряжение сигнала на входе каскада увеличивают до получения на выходе УЗЧ напряжения, соответствующего номинальной выходной мощности. Затем ручку регулятора громкости ставят в положение минимального усиления (в пределах плавной регулировки) и опять определяют выходное напряжение. Отношение обоих напряжений на выходе УЗЧ, выраженное в децибелах, характеризует глубину регулировки регулятора громкости и должно соответствовать ТУ.

Покаскадную регулировку УЗЧ начинают с оконечного каскада. В схеме, показанной на рис. 62, входной сигнал от звукового генератора через конденсатор Ср поступает на базу транзистора V. Режим каскада будет определяться напряжением источника питания Ек, постоянным напряжением смещения Uбэо на базе транзистора, падения напряжения на резисторах R2 и R0 в цепи эмиттера, служащего для термостабилизации усилителя.

Налаживание такого каскада УЗЧ сводится к регулировке коллекторного тока транзистора подбором резистора R2, при одновременном измерении напряжения Uбэо которое определяется заданным режимом транзистора. Проверку каскада на отсутствие нелинейных искажений с помощью осциллографа производят, подав от звукового генератора номинальное напряжение сигнала на частоте 1000 Гц на вход оконечного каскада. Коэффициент усиления при этом должен быть максимальным. Если УЗЧ исправен и работает без нелинейных искажений, на экране осциллографа можно наблюдать неискаженную форму выходного сигнала.

При увеличении уровня входного сигнала на выходе будут появляться нелинейные искажения сигнала. На рис. 66 приведены осциллограммы изменения формы синусоидальной кривой сигнала на выходе УЗЧ при различных величинах нелинейных искажений (8, 12, 15 и 20%). Для наблюдения низкочастотного сигнала частота развертки осциллографа выбирается в пределах 200-500 Гц.

Если при номинальном входном сигнале каскад вносит нелинейные искажения (форма сигнала в нагрузке искажена), изменяют режим работы каскада. Изменением коллекторного тока (за счет изменения R2, см. рис. 62) добиваются отсутствия нелинейных искажений.

Рис. 66. Осциллограммы изменений формы синусоидальной кривой сигнала на выходе усилителя при различных величинах нелинейных искажений

Настройку двухтактных выходных каскадов начинают, подав напряжение сигнала от генератора к фазоинверсному каскаду. Предварительное налаживание двухтактного оконечного каскада УЗЧ (см. рис. 64) на транзисторах производят, подбирая идентичные транзисторы или регулируя напряжение смещения с помощью резисторов 1-R13 и 1-R14 в базовых цепях. Условием нормальной работы двухтактного оконечного каскада является симметрия его плеч по постоянному и переменному токам. Следует помнить, что отсутствие симметрии плеч приводит к появлению нелинейных искажений и уменьшению динамического диапазона усилителя из-за плохой компенсации фона переменного тока, помех и т. д.

Регулировка фазоинверсных каскадов (см. рис. 61) заключается в установлении одинаковых значений выходного напряжения, сдвинутых одно относительно другого на 180°. Это осуществляют подбором сопротивлений резисторов в цепях коллектора и эмиттера. Настройка предварительных каскадов УЗЧ заключается в обеспечении типового режима работы транзисторов подбором сопротивлений резисторов R2 и R3 (см. рис. 60).

Окончательный этап налаживания УЗЧ заключается в подборе элементов цепей отрицательной обратной связи. Если в процессе регулировки предварительных каскадов УЗЧ выяснится, что чувствительность усилителя излишне велика, усиление можно уменьшить введением более глубокой обратной связи.

В ряде случаев для получения наиболее приятного звучания производят коррекцию частотной характеристики на низких частотах подбором переходных конденсаторов. Номинальная емкость

Переходных конденсаторов должна быть достаточной, чтобы низкие частоты воспроизводились хорошо. Изменение тембра звука с помощью регулятора тембра должно быть плавным.

Громкость воспроизведения при исправном регуляторе также должна плавно изменяться от максимума до минимума. Если при вращении ручек переменных резисторов (регулятора громкости и тембра) будут прослушиваться трески и шорохи, эти резисторы следует заменить, При максимальной громкости в любом положении регулятора тембра усилитель не должен самовозбуждаться.

Заключительным этапом налаживания УЗЧ является его испытание и проверка всех качественных показателей: уровня собственных шумов (фона), нелинейных искажений, номинальной выходной мощности, диапазона воспроизводимых частот и неравномерности частотной характеристики.

Убедившись в нормальной работе УЗЧ, снимают амплитудно-частотную характеристику (например, осциллографом). Если на

Вход УЗЧ от звукового генератора подать номинальное напряжение сигнала, на экране осциллографа можно наблюдать колебания выходного напряжения. При вращении ручки перестройки частоты генератора по диапазону звуковых частот на экране осциллографа видно, что постоянному уровню напряжений входного сигнала будут соответствовать различные уровни выходного напряжения.

Перед регулировкой УНЧ следует прикоснуться пинцетом к незаземленному гнезду для подключения звукоснимателя или непосредственно к управляющей сетке первой лампы усилителя. Если усилитель работает, то в громкоговорителе появится сильное гудение. Регулятор громкости при этом должен находиться в положении, соответствующем максимальной громкости.

Необходимо также правильно соединить приборы. Прежде всего соединяют между собой все клеммы, подлежащие заземлению. Клеммы приборов, находящихся со стороны входа, соединяются с клеммой Земля входа усилителя, а соответствующие клеммы приборов выхода подключаются к клемме Земля выхода усилителя. Затем клеммы Земля входа и выхода усилителя соединяют перемычкой. Подключение звукового генератора ко входу усилителя производится экранированным проводом, экран надежно заземляется.

Затем приемник включают на воспроизведение грамзаписи, а регулятор громкости устанавливают в положение максимального усиления. Если в приемнике имеется регулятор тембра, то проверку производят при различных положениях этого регулятора. При любом положении регуляторов тембра и максимальной громкости усилитель не должен возбуждаться. Возбуждение обнаруживается при появлении в громкоговорителе прерывистого звука или свистов различного тона, а также по показаниям измерительной аппаратуры.

Кроме самовозбуждения, в усилителе может появиться фон переменного тока. Наличие фона проверяется также при отсутствии сигнала на входе усилителя.

Затем приступают к проверке работы усилителя при наличии сигнала на входе. В качестве примера рассмотрим порядок проверки УНЧ промышленного приемника Сириус-309.

Выходной шланг звукового генератора типа ГЗ-33 или аналогичный ему прибор присоединяют к колодке для подключения магнитофона. Измеритель выхода типа ВЗ-2А присоединяют параллельно вторичной обмотке выходного трансформатора. Радиолу включают на воспроизведение грамзаписи. Регулятор громкости и регулятор тембра должны находиться в положении максимального усиления и наибольшей ширины полосы пропускания. На генераторе устанавливают сигнал с частотой 1000 Гц и такой уровень выходного напряжения, при котором напряжение на измерителе выхода ВЗ-2А будет 0,8В, что соответствует номинальной выходной мощности. Величина выходного напряжения звукового генератора является чувствительностью УНЧ и должна быть для данной радиолы не хуже 80 мВ. Для приемников других марок при выходном напряжении звукового генератора 0,2...0,25В усилитель должен отдавать в нагрузку мощность, близкую к номинальной.

После этого проверяют частотную характеристику усилителя и действие регулятора тембра и громкости. На вход УНЧ подают от генератора сигнал, равный 0,25В с частотой 1000 Гц. Регулятор тембра устанавливают в положение, соответствующее завалу высших звуковых частот. Регулятором громкости на измерителе выхода устанавливают напряжение, равное 0,8 В. Затем, не меняя напряжения, на звуковом генераторе устанавливают частоту, равную 5000 Гц. При этом выходное напряжение на измерителе выхода должно уменьшиться до 0,4 В.

Чтобы проверить действие регулятора громкости, необходимо на вход радиолы подать от генератора типа Г4-102 напряжение, модулированное по амплитуде напряжением 1000 Гц с глубиной модуляции 30 %, при котором измеритель выхода покажет напряжение 2,5 В. Регулятор громкости при этом должен находиться в положении максимальной громкости. Затем регулятор громкости устанавливают в положение минимальной громкости и замечают показание измерителя выхода. Отношение напряжения (на выходе приемника), соответствующего номинальной выходной мощности, к напряжению, соответствующему положению минимальной громкости регулятора громкости (в децибелах), должно быть не менее 40 дБ.

Проверяя частотную характеристику и действия регуляторов тембра и громкости, необходимо следить за тем, чтобы напряжение на выходе звукового генератора соответствовало 250 мВ. Пределы измерений выходного напряжения при проверке частотной характеристики и регулировки тембра и громкости в приемниках других марок должны быть указаны в инструкции по ремонту в виде таблицы.

Выше была рассмотрена методика проверки УНЧ с однртактным выходным каскадом, В высококачественных УНЧ приемников первого и высшего классов и транзисторных приемников оконечные каскады собираются по двухтактным схемам.

Настройку двухтактных выходных каскадов начинают с фазоинверсного каскада. При регулировке этого каскада устанавливают одинаковые величины выходного напряжения, сдвинутые по фазе на 180°. Для этого подбирают величины сопротивлений резисторов в цепях коллектора и эмиттера. Транзисторы, применяемые в двухтактной схеме усилителя мощности, должны иметь одинаковые параметры. Хорошо, если у транзисторов токи коллекторов и коэффициент усиления по току отличаются не более чем на ±10 %. Если транзисторы не идентичны по параметрам, то приходится регулировать напряжение смещения с помощью резисторов, включенных в базовых цепях. Условием нормальной работы двухтактного оконечного каскада является симметрия его плеч как по постоянному току, так и по переменному.

Если нужно проверить полярность подключения цепи обратной связи, на вход УНЧ от звукового генератора подают сигнал частотой 1000 Гц такой величины, при которой выходное напряжение было бы примерно вдвое меньше номинального. Затем замыкают накоротко резистор, с которого снимается напряжение обратной связи, и наблюдают за показаниями измерителя выходного напряжения. Если при этом показания измерителя выхода увеличиваются, то значит полярность обратной связи отрицательная (правильная), а если уменьшаются - положительная. Для изменения полярности необходимо поменять местами концы вторичной обмотки выходного трансформатора.

Заключительный этап регулировки усилителя - проверка всех его качественных показателей: а) измерение выходной мощности; б) снятие частотной характеристики; в) измерение коэффициента гармонических искажений; г) проверка уровня фона.

Методика ремонта УМЗЧ

Ремонт УМЗЧ – чуть ли не самый частый из вопросов, задаваемых на радиолюбительских форумах. И при том – один из самых сложных. Конечно, существуют «излюбленные» неисправности, но в принципе, выйти из строя может любой из нескольких десятков, а то и сотен компонентов, входящих в состав усилителя. Тем более, что и схем УМЗЧ – великое множество.

Конечно, охватить все случаи, встречающиеся в практике ремонта, не представляется возможным, однако, если следовать определенному алгоритму, то в подавляющем большинстве случаев удается восстановить работоспособность устройства за вполне приемлемое время. Данный алгоритм был выработан мною по опыту ремонта около полусотни различных УМЗЧ, от простейших, на несколько ватт или десятков ватт, до концертных «монстров» по 1…2 кВт на канал, большинство из которых поступало на ремонт без принципиальных схем .

Главной задачей ремонта любого УМЗЧ является локализация вышедшего из строя элемента, повлекшего за собой неработоспособность как всей схемы, так и выход из строя других каскадов. Поскольку в электротехнике бывает всего 2 типа дефектов:

  1. наличие контакта там, где его быть не должно;
  2. отсутствие контакта там, где он должен быть,

то «сверхзадачей» ремонта является нахождение пробитого или оборванного элемента. А для этого – отыскать тот каскад, где он находится. Дальше – «дело техники». Как говорят врачи: «Правильный диагноз - половина лечения».

Перечень оборудования и инструментов, необходимых (или по крайней мере крайне желательных) при ремонте:

  1. Отвертки, бокорезы, пассатижи, скальпель (нож), пинцет, лупа – т.е., минимальный обязательный набор обычного монтажного инструмента.
  2. Тестер (мультиметр).
  3. Осциллограф.
  4. Набор ламп накаливания на различные напряжения – от 220 В до 12 В (по 2 шт.).
  5. Низкочастотный генератор синусоидального напряжения (весьма желательно).
  6. Двухполярный регулируемый источник питания на 15…25(35) В с ограничением выходного тока (весьма желательно).
  7. Измеритель емкости и эквивалентного последовательного сопротивления (ESR ) конденсаторов (весьма желательно).
  8. И, наконец, самый главный инструмент – голова на плечах (обязательно!).

Рассмотрим данный алгоритм на примере ремонта гипотетического транзисторного УМЗЧ с биполярными транзисторами в выходных каскадах (рис.1), не слишком примитивного, но и не очень сложного. Такая схема является наиболее распростра­ненной «классикой жанра». Функционально он состоит из следующих блоков и узлов:

а) двухполярный источник питания (не показан);

б) входной дифференциальный каскад на транзисторах VT 2, VT 5 с токовым зеркалом на транзисторах VT 1 и VT 4 в их коллекторных нагрузках и стабилизатором их эмиттерного тока на VT 3;

в) усилитель напряжения на VT 6 и VT 8 в каскодном включении, с нагрузкой в виде генератора тока на VT 7;

г) узел термостабилизации тока покоя на транзисторе VT 9;

д) узел защиты выходных транзисторов от перегрузки по току на транзисторах VT 10 и VT 11;

е) усилитель тока на комплементарных тройках транзисторов, включенных по схеме Дарлингтона в каждом плече (VT 12 VT 14 VT 16 и VT 13 VT 15 VT 17).

Рис. 1.

  1. Первым пунктом любого ремонта является внешний осмотр сабжа и его обнюхивание (!). Уже одно это позволяет иногда хотя бы предположить сущность дефекта. Если пахнет паленым – значит, что-то явно горело.
  1. Проверка наличия сетевого напряжения на входе: тупо перегорел сетевой предо­хранитель, разболталось крепление проводов сетевого шнура в вилке, обрыв в сетевом шнуре и т.п. Этап – банальнейший по своей сущности, но на котором ремонт заканчивается примерно в 10% случаев.
  1. Ищем схему на усилитель. В инструкции, в Интернете, у знакомых, друзей и т.п. К сожалению, все чаше и чаще в последнее время – безуспешно. Не нашли – тяжко вздыхаем, посыпаем голову пеплом и принимаемся за вырисовывание схемы по плате. Можно этот этап и пропустить. Если неважен результат. Но лучше не пропускать. Муторно, долго, противно, но – «Надо, Федя, надо…» ((С) «Операция «Ы»…).
  1. Вскрываем сабж и производим внешний осмотр его «потрохов». Применяем лупу, если нужно. Можно увидеть разрушенные корпуса п/п приборов, потемневшие, обуглившиеся или разрушенные резисторы, вздутые электролитические конденсаторы или потеки электролита из них, оборванные проводники, дорожки печатной платы и т.п. Если таковое найдено – это еще не повод для радости: разрушенные детали могут быть следствием выхода из строя какой-нибудь «блошки», которая визуально цела.
  1. Проверяем блок питания. Отпаиваем провода, идущие от БП к схеме (или отсоединяем разъем, если он есть) . Вынимаем сетевой предохранитель и к контактам его держателя подпаиваем лампу на 220 В (60…100 Вт). Она ограничит ток первичной обмотки трансформатора, равно как и токи во вторичных обмотках.

Включаем усилитель. Лампа должна мигнуть (на время зарядки конденсаторов фильтра) и погаснуть (допускается слабое свечение нити). Это значит, что К.З. по первичной обмотке сетевого трансформатора нет, как нет явного К.З. в его вторичных обмотках. Тестером на режиме переменного напряжения измеряем напряжение на первичной обмотке трансформатора и на лампе. Их сумма должна быть равна сетевому. Измеряем напряжения на вторичных обмотках. Они должны быть пропорциональными тому, что измерено фактически на первичной обмотке (относительно номинального). Лампу можно отключать, ставить предохранитель на место и включать усилитель прямо в сеть. Повторяем проверку напряжений на первичной и вторичной обмотках. Соотношение (пропорция) между ними должно быть таким же, как при измерении с лампой.

Лампа горит постоянно в полный накал – значит, имеем К.З. в первичной цепи: проверяем целостность изоляции проводов, идущих от сетевого разъема, тумблер питания, держатель предохранителя. Отпаиваем один из поводов, идущих на первичную обмотку трансформатора. Лампа погасла – скорее всего вышла из строя первичная обмотка (или межвитковое замыкание).

Лампа горит постоянно в неполный накал – скорее всего, дефект во вторичных обмотках или в подключенных к ним цепях. Отпаиваем по одному проводу, идущему от вторичных обмоток к выпрямителя(м). Не перепутать, Кулибин! Чтобы потом не было мучительно больно от неправильной подпайки назад (промар­кировать, например, с помощью кусочков липкой малярной ленты). Лампа погасла – значит, с трансформатором все в порядке. Горит – снова тяжко вздыхаем и либо ищем ему замену, либо перематываем.

  1. Определились, что трансформатор в порядке, а дефект в выпрямителях или конденсаторах фильтра. Прозваниваем диоды (желательно отпаять под одному проводу идущему к их выводам, либо выпаять, если это интегральный мост) тестером в режиме омметра на минимальном пределе. Цифровые тестеры в этом режиме часто врут, поэтому желательно использовать стрелочный прибор. Лично я давно пользуюсь прозвонкой-«пищалкой» (рис. 2, 3). Диоды (мост) пробиты или оборваны – меняем. Целые – «звоним» конденсаторы фильтра. Перед измерением их надо разрядить (!!!) через 2-ваттный резистор сопротивлением около 100 Ом. Иначе можно сжечь тестер. Если конденсатор цел – при замыкании стрелка сначала отклоняется до максимума, а потом довольно медленно (по мере заряда конденсатора) «ползет» влево. Меняем подключение щупов. Стрелка сначала зашкаливает вправо (на конденсаторе остался заряд от предыдущего измерения) а потом опять ползет влево. Если есть измеритель емкости и ESR , то весьма желательно использовать его. Пробитые или оборванные конденсаторы меняем.

Рис. 2. Рис. 3.

  1. Выпрямители и конденсаторы целые, но на выходе блока питания стои́т стабилизатор напряжения? Не беда. Между выходом выпрямителя(ей) и входом(ами) стабилизатора(ов) включаем лампу(ы) (цепочку(и) ламп) на суммарное напряжение близкое к указанному на корпусе конденсатора фильтра. Лампа загорелась – дефект в стабилизаторе (если он интегральный), либо в цепи формирования опорного напряжения (если он на дискретных элементах), либо пробит конденсатор на его выходе. Пробитый регулирующий транзистор определяется прозваниванием его выводов (выпаять!).
  1. С блоком питания все в порядке (напряжения на его выходе симметричные и номинальные)? Переходим к самому главному – собственно усилителю. Подбираем лампу (или цепочки ламп) на суммарное напряжение, не ниже номинального с выхода БП и через нее (них) подключаем плату усилителя. Причем, желательно к каждому из каналов по отдельности. Включаем. Загорелись обе лампы – пробиты оба плеча выходных каскадов. Только одна – одно из плеч. Хотя и не факт.

Лампы не горят или горит только одна из них. Значит, выходные каскады, скорее всего, целые. К выходу подключаем резистор на 10…20 Ом. Включаем. Лампы должны мигнуть (на плате обычно есть еще конденсаторы по питанию). Подаем на вход сигнал от генератора (регулятор усиления – на максимум). Лампы (обе!) зажглись. Значит, усилитель что-то усиливает, (хотя хрипит, фонит и т.п.) и дальнейший ремонт заключается в поиске элемента, выводящего его из режима. Об этом – ниже.

  1. Для дальнейшей проверки лично я не использую штатный блок питания усилителя, а применяю 2-полярный стабилизированный БП с ограничением тока на уровне 0,5 А. Если такового нет – можно использовать и БП усилителя, подключенный, как было указано, через лампы накаливания. Только нужно тщательно изолировать их цоколи, чтобы случайно не вызвать КЗ и быть аккуратным, чтобы не разбить колбы. Но внешний БП – лучше. Заодно виден и потребляемый ток. Грамотно спроектированный УМЗЧ допускает колебания питающих напряжений в довольно больших пределах. Нам ведь не нужны при ремонте его супер-пупер параметры, достаточно просто работоспособности.
  1. Итак, с БП всё в порядке. Переходим к плате усилителя (рис. 4). Перво-наперво надо локализовать каскад(ы) с пробитым(и)/оборванным(и) компонентом(ами). Для этого крайне желательно иметь осциллограф. Без него эффективность ремонта падает в разы. Хотя и с тестером можно тоже много чего сделать. Почти все измерения производятся без нагрузки (на холостом ходу). Допустим, что на выходе у нас «перекос» выходного напряжения от нескольких вольт до полного напряжения питания.
  1. Для начала отключаем узел защиты, для чего выпаиваем из платы правые выводы диодов VD 6 и VD 7 (у меня в практике было три случая, когда причиной неработо­способности был выход из строя именно этого узла). Смотрим напряжение не выходе. Если нормализовалось (может быть остаточный перекос в несколько милливольт – это норма), прозваниваем VD 6, VD 7 и VT 10, VT 11. Могут быть обрывы и пробои пассивных элементов. Нашли пробитый элемент – меняем и восстанавливаем подключение диодов. На выходе ноль? Выходной сигнал (при подаче на вход сигнала от генератора) присутствует? Ремонт закончен.

er=0 width=1058 height=584 src="amp_repair.files/image004.jpg">

Рис. 4.

Ничего с сигналом на выходе не изменилось? Оставляем диоды отключенными и идем дальше.

  1. Выпаиваем из платы правый вывод резистора ООС (R 12 вместе с правым выводом C 6), а также левые выводы R 23 и R 24, которые соединяем проволочной пере­мычкой (показана на рис. 4 красным) и через дополнительный резистор (без нумерации, порядка 10 кОм) соединяем с общим проводом. Перемыкаем проволочной перемычкой (красный цвет) коллекторы VT 8 и VT 7, исключая конденсатор С8 и узел термостабилизации тока покоя. В итоге усилитель разъединяется на два самостоятельных узла (входной каскад с усилителем напряжения и каскад выходных повторителей), которые должны работать самостоятельно.

Смотрим, что имеем на выходе. Перекос напряжения остался? Значит, пробит(ы) транзистор(ы) «перекошенного» плеча. Выпаиваем, звоним, заменяем. Заодно проверяем и пассивные компоненты (резисторы). Наиболее частый вариант дефекта, однако должен заметить, что очень часто он является следствием выхода из строя какого-то элемента в предыдущих каскадах (включая узел защиты!). Поэтому последующие пункты все-таки желательно выполнить.

Перекоса нет? Значит, выходной каскад предположительно цел. На всякий случай подаем сигнал от генератора амплитудой 3…5 В в точку «Б» (соединения резисторов R 23 и R 24). На выходе должна быть синусоида с хорошо выраженной «ступенькой», верхняя и нижняя полуволны которой симметричны. Если они не симметричны – значит, «подгорел» (потерял параметры) какой-то из транзисторов плеча, где она ниже. Выпаиваем, звоним. Заодно проверяем и пассивные компоненты (резисторы).

Сигнала на выходе нет вообще? Значит, вылетели силовые транзисторы обоих плеч «насквозь». Печально, но придется выпаивать все и прозванивать с последующей заменой.

Не исключены и обрывы компонентов. Тут уж нужно включать «8-й инструмент». Проверяем, заменяем…

  1. Добились симметричного повторения на выходе (со ступенькой) входного сигнала? Выходной каскад отремонтирован. А теперь нужно проверить работоспособность узла термостабилизации тока покоя (транзистор VT 9). Иногда наблюдается нарушение контакта движка переменного резистора R 22 с резистивной дорожкой. Если он включен в эмиттерной цепи, как показано на приведенной схеме, ничего страшного с выходным каскадом при этом произойти не может, т.к. в точке подключения базы VT 9 к делителю R 20– R 22 R 21 напряжение просто повышается, он приоткрывается больше и, соответственно, снижается падение напряжения между его коллектором и эмиттером. В выходном сигнале простоя появится ярко выраженная «ступенька».

Однако (очень даже нередко), подстроечный резистор ставится между коллектором и базой VT9. Крайне «дураконезащищенный» вариант! Тогда при потере контакта движка с резистивной дорожкой напряжение на базе VT9 снижается, он призакрывается и, соответственно, повышается падение напряжения между его коллектором и эмиттером, что ведет к резкому возрастанию тока покоя выходных транзисторов, их перегреву и, естественно, тепловому пробою. Еще более дурацкий вариант выполнения этого каскада – если база VT9 соединена только с движком переменного резистора. Тогда при потере контакта на ней может быть все, что угодно, с соответствующими последствиями для выходных каскадов.

Если есть возможность, сто́ит переставить R 22 в базо-эмиттерную цепь. Правда, при этом регулировка тока покоя станет выражено нелинейной от угла поворота движка, но IMHO это не такая уж и большая плата за надежность. Можно просто заменить транзистор VT 9 на другой, с обратным типом проводимости, если позволяет разводка дорожек на плате. На работу узла термостабилизации это никак не повлияет, т.к. он является двухполюсником и не зависит от типа проводимости транзистора.

Проверка этого каскада осложняется тем, что, как правило, соединения с коллекторами VT 8 и VT 7 сделаны печатными проводниками. Придется поднимать ножки резисторов и делать соединения проводочками (на рис. 4 показаны разрывы проводников). Между шинами положительного и отрицательного напряжений питания и, соответственно, коллектором и эмиттером VT 9 включаются резисторы примерно по 10 кОм (без нумерации, показаны красным) и замеряется падение напряжения на транзисторе VT 9 при вращении движка подстроечного резистора R 22. В зависимости от количества каскадов повторителей оно должно изменяться в пределах примерно 3…5 В (для «троек, как на схеме) или 2,5… 3,5 В (для «двоек»).

  1. Вот и добрались мы до самого интересного, но и самого сложного – дифкаскада с усилителем напряжения. Они работают только совместно и разделить их на отдельные узлы принципиально невозможно.

Перемыкаем правый вывод резистора ООС R 12 с колекторами VT 8 и VT 7 (точка «А », являющаяся теперь его «выходом»). Получаем «урезанный» (без выходных каскадов) маломощный ОУ, вполне работоспособный на холостом ходе (без нагрузки). Подаем на вход сигнал амплитудой от 0,01 до 1 В и смотрим, что будет в точке А . Если наблюдаем усиленный сигнал симметричной относительно земли формы, без искажений, значит данный каскад цел.

  1. Сигнал резко снижен по амплитуде (мало усиление) – в первую очередь проверить емкость конденсатора(ов) С3(С4, т.к. производители для экономии очень часто ставят только один полярный конденсатор на напряжение 50 В и больше, рассчитывая, что в обратной полярности он все равно будет работать, что не есть гут). При его подсыхании или пробое резко снижается коэффициент усиления. Если нет измерителя емкости – проверяем просто путем замены на заведомо исправный.

Сигнал перекошен – в первую очередь проверить емкость конденсаторов С5 и С9, шунтирующих шины питания предусилительной части после резисторов R17 и R19 (если эти RC-фильтры вообще есть, т.к. нередко они не ставятся).

На схеме приведены два распространенных варианта симметрирования нулевого уровня: резистором R 6 или R 7 (могут быть, конечно же, и другие), при нарушении контакта движка которых тоже может быть перекос выходного напряжения. Проверить вращением движка (хотя, если контакт нарушен «капитально», это может и не дать результата). Тогда попробовать перемкнуть пинцетом их крайние выводы с выводом движка.

Сигнал вообще отсутствует – смотрим, а есть ли он вообще на входе (обрыв R3 или С1, К.З. в R1, R2, С2 и т.п.). Только сначала нужно выпаять базу VT2, т.к. на ней сигнал будет очень маленьким и смотреть на правом выводе резистора R3. Конечно, входные цепи могут сильно отличаться от приведенных на рисунке – включать «8-й инструмент». Помогает.

  1. Естественно, описать все возможные причинно-следственные варианты дефектов мало реально. Поэтому дальше просто изложу, как проверять узлы и компоненты данного каскада.

Стабилизаторы тока VT 3 и VT 7. В них возможны пробои или обрывы. Из платы выпаиваются коллекторы и замеряется ток между ними и землей. Естественно, сначала нужно рассчитать по напряжению на их базах и номиналам эмиттерных резисторов, каким он должен быть. (N . B .! В моей практике был случай самовозбуждения усилителя из-за чрезмерно большого номинала резистора R 10, поставленного изготовителем. Помогла подстройка его номинала на полностью работающем усилителе – без указанного выше разделения на каскады).

Аналогично можно проверить и транзистор VT 8: если перемкнуть коллектор-эмиттер транзистора VT 6, он также тупо превращается в генератор тока.

Транзисторы дифкаскада VT 2 V 5 T и токового зеркала VT 1 VT 4, а также VT 6 проверяются их прозвонкой после отпайки. Лучше замерить коэффициент усиления (если тестер – с такой функцией). Желательно подобрать с одинаковыми коэффициентами усиления.

  1. Пару слов «не для протокола». Почему-то в подавляющем большинстве случаев в каждый последующий каскад ставят транзисторы все бо́льшей и бо́льшей мощности. В этой зависимости есть одно исключение: на транзисторах каскада усиления напряжения (VT 8 и VT 7) рассеивается в 3…4 раза бо́льшая мощность , чем на предрайверных VT 12 и VT 23 (!!!). Поэтому, если есть такая возможность, их сто́ит сразу же заменить на транзисторы средней мощности. Неплохим вариантом будет КТ940/КТ9115 или аналогичные импортные.
  1. Довольно нередкими дефектами в моей практике были непропаи («холодная» пайка к дорожкам/«пятачкам» или плохое облуживание выводов перед пайкой) ножек компонентов и обломы выводов транзисторов (особенно в пластмассовом корпусе) непосред­ственно возле корпуса, которые очень трудно было увидеть визуально. Пошатать транзисторы, внимательно наблюдая за их выводами. В крайнем случае – выпаять и впаять заново.

Если проверили все активные компоненты, а дефект сохраняется – нужно (опять же, с тяжким вздохом), выпаять из платы хоть по одной ножке и проверить тестером номиналы пассивных компонентов. Нередки случаи обрывов постоянных резисторов без каких-либо внешних проявлений. Неэлектролитические конденса­торы, как правило, не пробиваются/обрываются, но всякое бывает…

  1. Опять же, по опыту ремонта: если на плате видны потемневшие/обугленные резисторы, причем симметрично в обеих плечах, сто́ит пересчитать выделяемую на нем мощность. В житомирском усилителе « Dominator » производитель поставил в одном из каскадов резисторы по 0,25 Вт, которые регулярно горели (до меня было 3 ремонта). Когда я просчитал их необходимую мощность – чуть не упал со стула: оказалось, что на них должно рассеиваться по 3 (три!) ватта…
  1. Наконец, все заработало… Восстанавливаем все «порушенные» соединения. Совет вроде бы и банальнейший, но сколько раз забываемый!!! Восстанавливаем в обратной последовательности и после каждого соединения проверяем усилитель на работоспособность. Нередко покаскадная проверка, вроде бы, показала, что все исправно, а после восстанов­ления соединений дефект опять «выползал». Последними подпаиваем диоды каскада токовой защиты.
  1. Выставляем ток покоя. Между БП и платой усилителя включаем (если они были отключены ранее) «гирлянду» ламп накаливания на соответствующее суммарное напряжение. Подключаем к выходу УМЗЧ эквивалент нагрузки (резистор на 4 или 8 Ом). Движок подстроечного резистора R 22 устанавливаем в нижнее по схеме положение и на вход подаем сигнал от генератора частотой 10…20 кГц (!!!) такой амплитуды, чтобы на выходе выл сигнал не более 0,5…1 В. При таких уровне и частоте сигнала хорошо заметна «ступенька», которую трудно заметить на большом сигнале и малой частоте. Вращением движка R22 добиваемся ее устранения. При этом нити накала ламп должны немного светиться. Можно проконтролировать ток и амперметром, включив его параллельно каждой гирлянде ламп. Не сто́ит удивляться, если он будет заметно (но не более, чем в 1,5…2 раза в бо́льшую сторону) отличаться от того, что указано в рекомендациях по настройке – нам ведь важно не «соблюдение рекомендаций», а качество звучания! Как правило, в «рекомендациях» ток покоя значительно завышается, для гарантированного достижения запланированных параметров («по худшему»). Перемыкаем «гирлянды» перемычкой, повышаем уровень выходного сигнала до уровня 0,7 от максимального (когда начинается амплитудное ограничение выходного сигнала) и даем усилителю прогреться 20…30 минут. Этот режим является наиболее тяжелым для транзисторов выходного каскада – на них при этом рассеивается максимальная мощность. Если «ступенька» не появилась (при малом уровне сигнала), а ток покоя возрос не более, чем в 2 раза, настройку считаем законченной, иначе убираем «ступеньку» снова (как было указано выше).
  1. Убираем все временные соединения (не забывать!!!), собираем усилитель окончательно, закрываем корпус и наливаем чарку, которую с чувством глубокого удовлетворения проделанной работой, выпиваем. А то работать не будет!

Конечно же, в рамках данной статьи не описаны нюансы ремонта усилителей с «экзотическими» каскадами, с ОУ на входе, с выходными транзисторами, включенными с ОЭ, с «двухэтажными» выходными каскадами и многое другое…

Falconist

Усилитель мощности Ланзар имеет две базовых схемы - первая полностью на биполярных транранзисторах (рис.1), вторая с использованием полевых в предпоследнем каскаде (рис. 2). На рисунке 3 приведена схема этого же усилителя, но выполненная в симмуляторе МС-8. Позиционные номера элементов практически совпадают, поэтому можно смотреть любую из схем.

Рисунок 1 Схема усилителя мощности ЛАНЗАР полностью на биполярных транзисторах.
УВЕЛИЧИТЬ


Рисунок 2 Схема усилителя мощности ЛАНЗАР с использованием полевых транзисторов в предпоследнем каскаде.
УВЕЛИЧИТЬ


Рисунок 3 Схема усилителя мощности ЛАНЗАР из симмулятора МС-8. УВЕЛИЧИТЬ

ПЕРЕЧЕНЬ ЭЛЕМЕНТОВ УСТАНОВЛЕННЫХ В УСИЛИТЕЛЕ ЛАНЗАР

ДЛЯ БИПОЛЯРНОГО ВАРИАНТА

ДЛЯ ВАРИАНТА С ПОЛЕВИКАМИ

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C9 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C10 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R3,R4 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R28,R29 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT2,VT4 = 2 x 2N5401
VT3,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT8 = 1 x 2SC5171
VT9 = 1 x 2SA1930

VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

C3,C2 = 2 x 22µ0
C4 = 1 x 470p
C6,C7 = 2 x 470µ0 x 25V
C5,C8 = 2 x 0µ33
C11,C10 = 2 x 47µ0
C12,C13,C18 = 3 x 47p
C15,C17,C1,C9 = 4 x 1µ0
C21 = 1 x 0µ15
C19,C20 = 2 x 470µ0 x 100V
C14,C16 = 2 x 220µ0 x 100V

R1 = 1 x 27k
R2,R16 = 2 x 100
R8,R11,R9,R12 = 4 x 33
R7,R10 = 2 x 820
R5,R6 = 2 x 6k8
R4,R3 = 2 x 2k2
R14,R17 = 2 x 10
R15 = 1 x 3k3
R26,R23 = 2 x 0R33
R25 = 1 x 10k
R29,R28 = 2 x 3R9
R27,R24 = 2 x 0.33
R18 = 1 x 47
R19,R20,R22
R21 = 4 x 2R2
R13 = 1 x 470

VD1,VD2 = 2 x 15V
VD3,VD4 = 2 x 1N4007

VT8 = 1 x IRF640
VT9 = 1 x IRF9640
VT2,VT3 = 2 x 2N5401
VT4,VT1 = 2 x 2N5551
VT5 = 1 x KSE350
VT6 = 1 x KSE340
VT7 = 1 x BD135
VT10,VT12 = 2 x 2SC5200
VT11,VT13 = 2 x 2SA1943

Для примера возьмем напряжение питания равным ±60 В. Если монтаж выполнен правильно и нет не исправных деталей то получим карту напряжений, показанную на рисунке 7. Токи, протекающие через элементы усилителя мощности показаны на рисунке 8. Рассеиваемая мощность каждого элемента показана на рисунке 9 (на транзисторах VT5, VT6 рассеивается порядка 990 мВт, следовательно корпусу TO-126 требуется теплоотвод ).


Рисунок 7. Карта напряжений усилителя мощности ЛАНЗАР УВЕЛИЧИТЬ


Рисунок 8. Карта токов усилителя мощности УВЕЛИЧИТЬ


Рисунок 9. Карта рассеиваемых мощностей усилителя УВЕЛИЧИТЬ

Несколько слов о о деталях и монтаже:
Прежде всего следут обратить на правильность монтажа деталей, поскольку схема симметричная, то бывают довольно частыми ошибки. На рисунке 10 показано распложение деталей. Регулировка тока покоя (тока, протекающего через оконечные транзисторы при замкнутом на общий провод входе и компенсирующего вольт-амперную характеристику транзисторов) производится резистором Х1. При первом включении движок резистора должен находиться в верхенм по схеме положении, т.е. иметь максимальное сопротивление. Ток покоя должен составлять 30...60 мА. Ставить выше не имеет мысла - ни приборы, ни на слух ощутимых изменений не происходит. Для установки тока покоя производится измерение напряжения на любом из эмиттерных резисторов оконечного каскада и выставляется в соответствии с таблицей:

НАПРЯЖЕНИЕ НА ВЫВОДАХ ЭМИТТЕРНОГО РЕЗИСТОРА, В

СЛИШКОМ МАЛЕНЬКИЙ ТОК ПОКОЯ, ВОЗМОЖНЫ ИСКАЖЕНИЯ "СТУПЕНЬКА", НОРМАЛЬНЫЙ ТОК ПОКОЯ, ВЕЛИКОВАТ ТОК ПОКОЯ - ЛИШНИЙ НАГРЕВ, ЕСЛИ ЭТО НЕ ПОПЫТКА СОЗДАТЬ КЛАСС "А", ТО ЭТО АВАРИЙНЫЙ ТОК .

ТОК ПОКОЯ ОДНОЙ ПАРЫ ОКОНЕЧНЫХ ТРАНЗИСТОРОВ, мА


Рисунок 10 Расположение деталей на плате усилителя мощности. Показаны места, где возникают наиболее часто ошибки монтажа.

Поднимался вопрос о целесообразности использования в эмиттерных цепях оконечных транзисторов керамических резисторов. Можно использовать и МЛТ-2, по два штуки, включенных параллельно с номиналом 0,47...0,68 Ома. Однако вносимые керамическими резисторами искажения слишком малы, а вот тот факт, что они обрывные - при перегрузке они обрываются, т.е. их сопротивление становиться бесконечным, что довольно часто приводит к спасению оконечных транзисторов в критических ситуациях.
Площадь радиатора зависит от условий охлаждения, на рисунке 11 показан один из вариантов, крепить силовые транзисторы к теплоотводу необходимо через изоляционные прокладки . Лучше использовать слюду, поскольку она обладает довольно маленьким тепловым сопротивлением. Один из вариантов крепления транзисторов пказан нарисунке 12.


Рисунок 11 Один из вариантов радиатора для мощности 300 Вт при условии хорошей вентиляции


Рисунок 12 Один из вариантов крепления транзисторов усилителя мощности к радиатору.
Необходимо использовать изоляционные прокладки.

Перед монтажом силовых транзисторов, а так же в случае подозрений на их пробой, силовые транзисторы проверяются тестером. Предел на тестере устанавливается на проверку диодов (рис 13).


Рисунок 13 Проверка оконечных транзисторов усилителя перед монтажом и в случае подозрений на пробой транзисторов после критических ситуаций.

Стоит ли подбирать транзисторы по коф. усиления? Споров на эту тему довольно много и идея подбора элементов тянеться еще с глубоких семидесятых годов, когда качество элементной базы оставляло желать лучшего. На сегодня завод изготовитель гарантирует разброс параметров между транзисторами одной партии не более 2%, что уже само по себе говорит о хорошем качестве элементов. Кроме этого, учитывая то, что оконечные транзисторы 2SA1943 - 2SC5200 прочно обосновались в звукотехнике завод изготовитель начал выпус парных транзисторов, т.е. транзисторы и прямой, и обратной проводимости уже имеют одинаковые параметры, т.е. разницу не боле 2% (рис 14). К сожалению такие пары не всегда встречаютсяв продаже, тем не менее несколько раз нам доводилось покупать "близнецов". Однако даже имея разборос по коф. усиления между транзисторами прямой и обратной проводимости необходимо лишь следить за тем, чтобы транзисторы одной структуры были одной партии, поскольку включены они параллельно и разброс по h21 может вызывать перегрузку одного из транзисторов (у которого этот параметр выше) и как следствие - перегрев и выход из строя. Ну а разброс между транзисторами для положительной и отрицательной полуволн вполне компенсируется отрицательной обратной связью.


Рисунок 14 Транзисторы разной структуры, но одной партии.

Тоже самое относиться и к транзисторам дифкаскада - если они одной партии, т.е. куплены одновременно в одном месте, то шанс на то, что разница в параметрах будет более 5 % ОЧЕНЬ малы. Лично нам больше нравяться транзисторы 2N5551 - 2N5401 фирмы ФАИРЧАЛЬД, однако и ST звучат вполне достойно.
Однако это усилитель собирают и на отечественной элементной базе. Это вполне реально, однако давайте поправку на то, что у купленных КТ817 и найденных на полках у себя в мастерской, купленных еще в 90-х года параметры будут отличаться довольно сильно. Поэтому тут лучше все таки воспользаваться имеющимся почти во всех цифровых тестреах измерителем h21. Правда эта примочка в тестере показываетправду лишь для транзисторов малой мощности. Подбирать при ее помощи транзисторы оконечного каскада будет не совсм правильно, поскольку h21 зависит еще и от протекаемого тока. Именно поэому для отбраковки силовых транзисторов уже делают отдельные проверочные стенды. с регулируемых токо коллектора проверяемого транзистора (рис 15). Градуировка постоянного прибора для отбраковки транзисторов производиться таким образом, чтобы микроамперметр при токе коллектора 1 А отклонялся на половину шкалы, а при токе 2 А - полностью. Собирая усилитель только себе стенд можно и не делать, достаточно двух мультиметров с пределом измерения тока не менее 5 А.
Для произведения отбраковки следует взять любой транзистор из отбраковываемой партии и переменным резистором выставить ток коллектора равным 0,4...0,6 А для транзисторов предпоследнего каскада и 1...1,3 А для транзисторов оконечного каскада. Ну а далее все просто - к клемам подключаются транзисторы и по показаниям амперметра, включенного в коллектор выбираются транзисторы с одинаковыми показаниями, не забывая поглядывать на показания амперметра в базовой цепи - они тоже должны быть похожими. Разброс в 5 % вполне приемлем, для стрелочных индикаторов на шкале можно сделать метки "зеленого коридора" во время градуировки. Следует заметить, что подобные токи вызывают не плохой нагрев кристала транзистора, а учитывая то, что он без теплоотвода длительность замеров не следует растягивать во времени - кнопку SB1 удерживать в нажатом состоянии более чем 1...1,5 сек не следует . Подобная отбраковка прежде всего позвлит отобрать транзисторы с реально похожим коф усиления, а проверка мощных транзисторов цифровым мультиметром есть лишь проверка для успокоения совести - в режиме микротоков у мощных транзисторов коф усиления более 500 и даже небольшой разброс при проверке мультиметром в режимах реальных токов может оказаться огромным. Другими словами - проверяя коф усиления мощного транзистора показанаия мультиметра есть не что иное как абстрактная величина, не имеющая ни чего общего с коф усиления транзистора через переход коллектор-эмиттер протекат хотя бы 0,5 А.


Рисунок 15 Отбраковка мощных транзисторов по коф усиления.

Проходные конденсаторы С1-С3, С9-С11 имеют не совсем типовое включение, по сравнению с заводскими аналогами усилителей. Связанно это с тем, что при таком включении получается не полярный конденсатор довольно большой емкости, а использование плленочного конденсатора на 1 мкФ компенсирует не совсем корректную работу электролитов на высоких частотах. Другими словами эта реализация позволила получить более приятный звук усилителя, по сравнению с одним элетролитом или одним пленочным конденсатором.
В старых версиях Ланзар вместо диодов VD3, VD4 использовались резисторы на 10 Ом. Смена элементной базы позволила немного улучшить работу на пиках сигнала. Для более подробного рассмотрения этого вопроса обратимся к рисунку 3 .
В схеме смоделирован не идеальный источник питания, а более приблежонный к реальному, имеющему свое сопротивление (R30, R31). При воспроизведении синусоидального сигнала напряжение на шинах питания будет иметь вид, показанный на рисунке 16. В данном случае емкость конденсаторов фильтра питания составляет 4700 мкФ, что несколько маловато. Для нормальной работы усилителя емкость конденсаторов питания должна составлять не менее 10000 мкФ на один канал , можно и больше, но существенной разницы уже не заметно. Но вернемся к рисунку 16. Синией линией показано напряжение непосредственно на коллекторах транзисторов оконечного каскада, а красной линией - напряжение питания усилителя напряжения в случае использования резисторов вместо VD3, VD4. Как видно из рисунка напряжение питания оконечного каскада просело с 60 В и распологается между 58,3 В в паузе и 55,7 В на пике синусоидального сигнала. Благодарая тому, что конденсатор С14 не только заражается через развязывающий диод, но и разряжается на пиках сигнала напряжение питания усилителя напряжение приобретает вид красной линии на рисунке 16 и колебается от 56 В до 57,5 В, т.е имеет размах порядка 1,5 В.


Рисунок 16 форма напряжения при использовании развязывающих резисторов.


Рисунок 17 Форма напряжений питания на оконечных транзисторах и усилителе напряжения

Заменив резисторы на диоды VD3 и VD4 мы получаем напряжения, представленные на рисунке 17. Как видно из рисунка амплитуда пульсаций на коллекторах оконечных транзисторах почти не изменилась, а вот напряжение питания усилителя напряжения приобрело совсем другой вид. Прежде всего амплитуда уменьшилась с 1,5 В до 1 В, а так же в тот момент когда проходит пик сигнала напряжение питания УН проседает лишь до половины амплитуды, т.е. примерно на 0,5 В, в то время как при использовании резистора напряжение на пике сигнала проседает 1,2 В. Другими словами - простой заменой резисторов на диоды удалось уменьшить пульсации питания в усилителе напряжения в 2 с лишним раза.
Однако это теоритические выкладки. На практике эта замена позволяет получить "халявных" 4-5 Ватт, поскольку усилителя наступает при более высоком выходном напряжении и уменьшает искажения на пиках сигнала.
После сборки усилителя и регулировки тока покоя следует убедиться в отсутствии постоянного напряжения на выходе усилителя мощности. Если оно выше 0,1 В, то это уже однозначно требует корректировки режимов работы усилителя. В данном случае наиболее простым способом является подбор "подпирающего" резистора R1. Для наглядности приведем несколько вариантов этого номинала и покажем иземения постоянного напряжения на выходе усилителя на рисунке 18.


Рисунок 18 Изменение постоянного напряжения на выходе усилителя в зависимости от номана R1

Не смотря на то, что на симмуляторе оптимальное постоянное напряжение получилось лишь при R1 равным 8,2 кОм в реальных усилителях этот номинал составляет 15 кОм...27 кОм, в зависимости какого производителя используются транзисторы дифкаскада VT1-VT4.
Пожалуй стоит сказать несколько слов об отличиях усилителей мощности полгостью на биполярных транзисторах и с использованием полевиков в предпоследенм каскаде. Прежде всего при использовании полевых транзисторов ОЧЕНЬ сильно разгружается выходной каскад усилителя напряжения, поскольку затворы полевых транзисторов практически не имеют активного сопротивления - только емкость затвора является нагрузкой. В этом варианте схемотехника усилителя начинает наступать на пятки усилителям класса А, поскольку во всем диапазоне выходных мощностей ток протекающий через выходной каскад усилителя напряжения почти не изменятеся. Увеличение тока покоя предпоследнего каскада, работающего на плавающую нагрузку R18 и базы эмиттерных повторителей мощных транзисторов тоже меняется в небольших пределах, что в итоге привело к довольно заметному снижению THD. Однако в этой бочке меда есть и ложка дегтя - снизился КПД усилителя и уменьшилась выходная мощность усилителя, за счет необходимости подавать на затворы полевиков напряжение более 4 В для их открытия (для биполярного транзистора этот параметр составляет 0,6...0,7 В). На рисунке 19 показан пик синусоидального сигнала усилителя, выполненого на биполярных транзистора (синяя линия) и полевиках (красная линия) при максимальной амплитуде выходного сиганала.


Рисунок 19 Изменение амплитуды выходного сигнала при использовании разной элементной базы в усилителе.

Другими словами снижение THD заменой полевых транзисторов приводит к "недополучению" примерно 30 Вт, а уменьшение уровня THD примерно в 2 раза, так что именно ставить уже решать каждому персонально.
Так же следует помнить, что уровень THD зависит и от собственного коф усиления усилителя. В данном усилителе коф усиления зависит от номиналов резисторов R25 и R13 (при используемых номиналах коф усиления составляет почти 27 дБ). Расчитать коф усиления в дБ можно по формуле Ku =20 lg R25 / (R13 +1) , где R13 и R25 - сопротивление в Омах, 20 - множитель, lg - десятичный логарифм. Если необходимо расчитать коф усиления в разах, то формула приобретает вид Ku = R25 / (R13 + 1) . Этот расчет бывает необходим при изготовлении предварительного усилителя и вычисления амплитуды выходного сигнала в вольтах, чтобы исключить работу усилителя мощности в режиме жесткого клиппинга.
Снижение собственного коф. усиления до 21 дБ (R13 = 910 Ом) приводит к снижению уровня THD примерно в 1,7 раза при той же амплитуде выходного сигнала (увеличена амплитуда входного напряжения).

Ну а теперь несколько слов о самых популярных ошибках при сборке усилителя самостоятельно.
Одной из самых популярных ошибок является монтаж стабилитронов на 15 В не правильной полярностью , т.е. эти элементы работают не в режиме стабилизации напряжения, а как обычные диоды. Как правило такая ошибка вызывает появление на выходе постоянного напряжения, причем полярность может быть как положительной, так и отрицательной (чаще отрицательной). Величина напряжения базируется между 15 и 30 В. При этом ни один элемент не греется. На рисунке 20 показана карта напряжений при не правильном монтаже стабилитронов, которую выдал симмулятор. Ошибочный элементы выделены зеленым цветом.


Рисунок 20 Карта напряжений усилителя мощности с неправильно запаянными стабилитронами.

Следующей популярной ошибкой является монтаж транзисторов "вверх ногами" , т.е. когда путают коллектор и эмиттер местами. В этом случае так же наблюдается постоянное напряжение, отсутствие каких либо признаков жизни. Правда обратное включение транзисторов дифкаскада может привести к выходу их из строя, ну а дальше как повезет. Карта напряжений при "перевернутом" включении показан на рисунке 21.


Рисунок 21 Карта напряжений при "перевернутом" включении транзисторов дифкаскада.

Довольно часто транзисторы 2N5551 и 2N5401 путают местами , причем могут попутать так же и эмиттер с коллектором. На рисунке 22 показана карта напряжений усилителя при "правильном" монтаже попутанных местами транзисторов, а на рисунке 23 - транзисторы не только поменяны местами, но и перевернуты.


Рисунок 22 Транзитсторы дифкаскада попутаны местами.


Рисунок 23 Транзисторы дифкаскада попутаны местами, кроме этого попутаны местами коллектор и эмиттер.

Если попутаны местами транзисторы, а эмиттер-коллектор запаяны правильно, то на выходе усилителя наблюдается небольшое постоянное напряжение, регулируется ток покоя окнечных транзисторов, но звук либо отсутствует полностью, либо на уровне "кажется он играет". Перед монтажом на плату запаянных таким образом тразисторов их следует проверить на работоспособность. Если транзисторы поменяны местами, да еще и поменяны местами эмиттер-коллектор, то тут ситуация уже довольно критическая, поскольку в этом варианте для транзисторов дифкаскада полярность приложенного напряжения является правильной, а вот рабочие режимы нарушены. В этом варианте наблюдается сильный нагрев оконечных транзисторов (протекающий через них ток равен 2-4 А), небольшое постоянное напряжение на выходе и едва слышный звук.
Попутать цоколевку транзисторов последнего каскада усилителя напряжения довольно проблематично, при использовании транзисторов в корпусе ТО-220, а вот транзисторы в корпусе ТО-126 довольно часто впаивают "вверх ногами", меняя местами коллектор и эмиттер . В этом варианте наблюдается сильно искаженный выходной сигнал, плохая регулировка тока покоя, отсутствие нагрева транзисторов последнего каскада усилителя напряжения. Более подробная карта напряжения для этого варианта монтажа усилителя мощности показана на рисунке 24.


Рисунок 24 Транзисторы последнего каскада усилителя напряжения запаяны "вверх ногами".

Иногда путают местами транзисторы последнего каскада усилителя напряжения. В этом случае наблюдается небольшое постоянное напряжение на выходе усилителя, звук если и есть, то очень слабый и с огромными искажениями, ток покоя регулируется только в сторону увеличения. Карта напряжений усилителя с такой ошибкой показана на рисунке 25.


Рисунок 25 Ошибочный монтаж транзисторов последнего каскада усилителя напряжения.

Предпоследний каскад и оконечные транзисторы в усилителе местами путают слишком редко, поэтому этот вариант расматриваться не будет.
Иногда усилитель выходит из строя, самые частые причины для этого перегрев оконечных тразисторов или перегрузка. Недостаточная площадь теплоотвода или плохой тепловой контакт фланцев транзисторов может привести к нагреву кристалла оконечных транзисторов до температуры механического разрушения. Поэтому до полного ввода усилителя мощности в эксплуатацию необходимо убедиться в том, что винты или саморезы, крепящие оконечники к радиатору затануты полностью, изолирующиепрокладки между фланцами транзисторов и теплоотводом имеет хорошую смазку термопастой (рекомендуем старую, добрую КПТ-8), а так же размер прокладок больше размера транзистора минимум на 3 мм с каждой стороны. Если недостаточна площадь теплоотвода, а другого попросту нет, то можно воспользоваться вентиляторами на 12 В, которые используются в компьютерной технике. Если собранный усилитель планируется для работы только на мощностях выше средней (кафе, бары и т.д.) то куллер можно влючить на непрерывную работу, поскольку его все равно не будет слышно. Если же усилитель собран для домашенго использования и будет эксплуатироваться и на малых мощностях, то работу куллера уже будет слышно, а необходимость в охлаждении отпадает - радиатор почти не греется. Для таких режимо работы лучше испозовать управляемык куллеры. Несколько вариантовуправления куллером можно . Предлагаемые варианты управления куллерами основаны на контрле температуры радиатора и вклюячаются лишь по достижении радиатором определенной, регулируемой температуры. Решить проблему выхода из строя окнечных транзисторов можно либо установкой дополнительной защиты от перегрузки, либо аккуратным монтажом проводов идущих на акустическую систему (например использовать для подключения АС к усилителю автомобильных безкислородных проводов, которые кроме уменьшеного активного сопротивления имеют повышенную крепость изоляции, устойчивую к ударам и температуре).
Для примера рассмотрим несколько варианов выхода из строя оконечных транзисторов. На рисунке 26 показана карта напряжений в случае выхода обратных оконечных транзисторов (2SC5200) на обрыв, т.е. переходы отгорели и имеют максимально возможное сопротивление. В этом случае усилитель сохраняет рабочие режимы, на выходе сохраняется напряжение близкое в нулю, но вот качество звука однозначно желает лучше, поскольку воспроизводится только одна полуволна синусоиды - отрицательная (рис 27). Тоже самое будет при обрыве прямых оконечных транзисторов (2SA1943), только воспроизводится будет положительная полуволна.


Рисунок 26 Обратные оконечные транзисторы выгорели до обрыва.


Рисунок 27 Сигнал на выходе усилителя в случае, когда транзисторы 2SC5200 отгорели полностью

На рисунке 27 - карта напряжений в ситуации, когда оконечники вышли из строя и имеют максимально низкое сопротивление, т.е. закорочены. Этот вариант неисправности загоняет усилитель в ОЧЕНЬ жесткие условия и дальнейшие горение усилителя ограничивает только источник питания, поскольку потребляемый в этот момент ток может превысить 40 А. Оставшиеся в живых детали мгновенно набирают температуру, в том плече, где транзисторы еще исправны напряжение немного больше, чем в том, где собственно произошло замыкание на шину питания. Однако именно эта ситуация относиться к наиболее легкой диагностике - достаотчно до включения усилителя проверит мультиметром сопротивление переходов между собой, даже не выпаивая их из усилителя. Предел измерения, установленного на мультиметре - ПРОВЕРКА ДИОДОВ или ЗВУКОВАЯ ПРОЗВОНКА. Как правило выгоревшие транзисторы показывают сопротивление между переходами в диапазоне от 3 до 10 Ом.


Рисунок 27 Карта напряжений усилителя мощности в случае перегорания оконечных транзисторов(2SC5200) на короткое замыкание

Усилитель поведет себя точно так же в случае пробоя предпоследнего каскада - при отгороани выводов будет воспроизводиться только одна полуволна синусоиды, при коротком замыкании переходов - огромное потребление и нагрев.
При перегреве, когда считают, что радиатор на транзисторы последнего каскада усилителя напряжения не нужен (транзисторы VT5, VT6) они могут так же выйти из строя, причем как уйти на обрыв, так и на короткое замыкание. В случае отгорания переходов VT5 и бесконечно большого сопротивления переходов возникает ситуация, когда поддерживать ноль на выходе усилителя не чем, а приоткрытые оконечные транзисторы 2SA1943 потянут напряжение на выходе усилителя к минусу напряжения питания. Если нагрузка подключена, то величина постоянного напряжения будет зависеть от установленного тока покоя - чем он выше, тем будет больше величина отрицательного напряжения на выходе усилителя. Если нагрузка не подключена, то на выходе будет напряжение очень близкое по величине к минусовой шине питания (рис 28).


Рисунок 28 Транзистор усилителя напряжения VT5 "оборвался".

Если же транзистор в последнем каскаде усилителя напряжения VT5 вышел из строя и его переходы замкнулись, то при подключенной нагрузке на выходе будет довольно большое постоянное напряжение и ппротекающий через нагрузку постоянный ток, порядка 2-4 А. Если же нагрузка отключена, то напряжение на выходе усилителя будет почти равно положительной шине питания (рис. 29).


Рисунок 29 Транзистор усилителя напряжения VT5 "замкнулся".

На последок осталось только предложить несколько осцилограмм в наиболее координальных точках усилителя:


Напряжение на базах транзисторов дифкаскада при входном напряжении 2,2 В. Синия линия - базы VT1-VT2, красная линия - базы VT3-VT4. Как видно из рисунка и амплитудат и фаза сигнала практически совпадают.


Напряжение в точке соединения резисторов R8 и R11 (синяя линия) и в точке соединения резисторов R9 и R12 (красная линия). Входное напряжение 2,2 В.


Напряжение на коллекторах VT1 (красная линия), VT2 (зеленая), а так же на верхенм выводе R7 (синяя) и нижнем выводе R10 (сиреневая). ПРовал напряжения вызван рабтой на нагрузку и небольшим уменьшением питающего напряжения.


Напряжение на коллекторах VT5 (синим) и VT6 (красным. Входное напряжение уменьшено до 0,2 В, чтобы было наглядней видно, по по постоянному напряжению имеется разница примерно в 2,5 В

Осталось лишь пояснить на счет блока питания. Прежде всего мощность сетевого трансформатора для усилителя мощности в 300 Вт должна быть не менее 220-250 Вт и этого будет достаточно для воспроизведения даже очень жестких композиций.Более подробно о мощности блока питания усилителей мощности можно . Другими словами, если у вас есть трансформатор от лампового цветного телевизора, то это ИДЕАЛЬНЫЙ ТРАНСФОРМАТОР для одного канала усилителя позволяющего без проблем воспроизводить музыкальные композиции мощностью до 300-320 Вт.
Емкость конденсаторов фильтра блока питания должна быть не менее 10 000 мкФ на плечо, оптимально 15 000 мкФ. При использовании емкостей выше указанного номинала Вы попросту увеличиваете стоимость конструкции без какого либо заметного улучшения качества звука. Не следует забывать, что при использовании таких больших емкостей и напряжении питания выше 50 В на плечо мгновенные токи уже критически огромны, поэтому настоятельно рекомендуется использовать ситемы софт-старта.
Прежде всего настоятельно рекомендутеся перед сборкой какого либо усилителя скачать на ВСЕ полупроводниковые элементы описания заводов производителей (даташиты). Это даст возможность ознакомиться с элементной базой поближе и в случае отсутствия в продаже какого либо элемента найти ему замену. Кроме этого у вас будет под рукой правильная цоколевка транзисторов, что значительно увеличит шансы на правильный монтаж. Особо ленивым предлагается ОЧЕНЬ внимаетльно ознакомиться хотя бы с расположением выводов транзисторов, используемых в усилителе:

.
На последок осталось добавить, что далеко не всем требуется мощность 200-300 Вт, поэтому печатная плата была переработана под одну пару оконечных танзисторов. Данный файл выполнен одним из посетителей форума сайта "ПАЯЛЬНИК" в программе СПРИНТ-ЛАЙОУТ-5 (СКАЧАТЬ ПЛАТУ). Подробности о данной программе находяться .