Как работает nat. Преобразование сетевых адресов (NAT)

17.10.2023 PS3

IP-адреса являются дефицитным ресурсом. У провайдера может быть /16-адрес (бывший класс В), дающий возможность подключить 65 534 хоста. Если клиентов становится больше, начинают возникать проблемы. Хостам, подключающимся к Интернету время от времени по обычной телефонной линии, можно выделять IP-адреса динамически, только на время соединения. Тогда один /16-адрес будет обслуживать до 65 534 активных пользователей, и этого, возможно, будет достаточно для провайдера, у которого несколько сотен тысяч клиентов. Когда сессия связи завершается, IP-адрес присваивается новому соединению. Такая стратегия может решить проблемы провайдеров, имеющих не очень большое количество частных клиентов, соединяющихся по телефонной линии, однако не поможет провайдерам, большую часть клиентуры которых составляют организации.

Дело в том, что корпоративные клиенты предпочитают иметь постоянное соединение с Интернетом, по крайней мере в течение рабочего дня. И в маленьких конторах, например туристических агенствах, состоящих из трех сотрудников, и в больших корпорациях имеются локальные сети, состоящие из некоторого числа компьютеров. Некоторые компьютеры являются рабочими станциями сотрудников, некоторые служат веб-серверами. В общем случае имеется маршрутизатор ЛВС, соединенный с провайдером по выделенной линии для обеспечения постоянного подключения. Такое решение означает, что с каждым компьютером целый день связан один IP-адрес. Вообще-то даже все вместе взятые компьютеры, имеющиеся у корпоративных клиентов, не могут перекрыть имеющиеся у провайдера IP-адреса. Для адреса длины /16 этот предел равен, как мы уже отмечали, 65 534. Однако если у поставщика услуг Интернета число корпоративных клиентов исчисляется десятками тысяч, то этот предел будет достигнут очень быстро.

Проблема усугубляется еще и тем, что все большее число частных пользователей желают иметь ADSL или кабельное соединение с Интернетом. Особенности этих способов заключаются в следующем:

а) пользователи получают постоянный IP-адрес;

б) отсутствует повременная оплата (взимается только ежемесячная абонентская плата).

Пользователи такого рода услуг имеют постоянное подключение к Интернету. Развитие в данном направлении приводит к возрастанию дефицита IP-адресов. Присваивать IP-адреса «на лету», как это делается при телефонном подключении, бесполезно, потому что число активных адресов в каждый момент времени может быть во много раз больше, чем имеется у про­вайдера.

Часто ситуация еще больше усложняется за счет того, что многие пользователи ADSL и кабельного Интернета имеют дома два и более компьютера (например, по одному на каждого члена семьи) и хотят, чтобы все машины имели выход в Интернет. Что же делать - ведь есть только один IP-адрес, выданный провайдером! Решение таково: необходимо установить маршрутизатор и объединить все компьютеры в локальную сеть. С точки зрения провайдера, в этом случае семья будет выступать в качестве аналога маленькой фирмы с несколькими компьютерами. Добро пожаловать в корпорацию Пупкиных!

Проблема дефицита IP-адресов отнюдь не теоретическая и отнюдь не относится к отдаленному будущему. Она уже актуальна, и бороться с ней приходится здесь и сейчас. Долговременный проект предполагает тотальный перевод всего Интернета на протокол IPv6 со 128-битной адресацией. Этот переход действительно постепенно происходит, но процесс идет настолько медленно, что затягивается на годы. Видя это, многие поняли, что нужно срочно найти какое-нибудь решение хотя бы на ближайшее время. Такое решение было найдено в виде метода трансляции сетевого адреса, NAT (Network Address Translation) , описанного в RFC 3022. Суть его мы рассмотрим позже, а более подробную информа­цию можно найти в (Butcher, 2001).

Основная идея трансляции сетевого адреса состоит в присвоении каждой фирме одного IP-адреса (или, по крайней мере, небольшого числа адресов) для интернет-трафика. Внутри фирмы каждый компьютер получает уникальный IP-адрес, используемый для маршрутизации внутреннего трафика. Однако как только пакет покидает пределы здания фирмы и направляется к провайдеру, выполняется трансляция адреса. Для реализации этой схемы было создано три диапазона так называемых частных IP-адресов. Они могут использоваться внутри компании по ее усмотрению. Единственное ограничение заключается в том, что пакеты с такими адресами ни в коем случае не должны появляться в самом Интернете. Вот эти три зарезервированных диапазона:

10.0.0.0 - 10.255.255.255/8 (16 777 216 хостов)

172.16.0.0 - 172.31.255.255/12 (1 048 576 хостов)

192.168.0.0 -192.168.255.255/16 (65 536 хостов)

Работа метода трансляции сетевых адресов показана на нжеследующей схеме. В пределах территории компании у каждой машины имеется собственный уникальный адрес вида 10.x.y.z. Тем не менее, когда пакет выходит за пределы владений компании, он проходит через NAT-блок, транслирующий внутренний IP-адрес источника (10.0.0.1 на рисунке) в реальный IP-адрес, полученный компанией от провайдера (198.60.42.12 для нашего примера). NAT-блок обычно представляет собой единое устройство с брандмауэром , обеспечивающим безопасность путем строго отслеживания входящего и исходящего -трафика компании. NAT-блок может быть интегрирован с маршрутизатором компании.

Мы до сих пор обходили одну маленькую деталь: когда приходит ответ на запрос (например, от веб-сервера), он ведь адресуется 198.60.42.12. Как же NAT-блок узнает, каким внутренним адресом заменить общий адрес компании? Вот в этом и состоит главная проблема использования трансляции сетевых адресов. Если бы в заголовке IP-пакета было свободное поле, его можно было бы использовать для запоминания адреса того, кто посылал запрос. Но в заголовке остается неиспользованным всего один бит. В принципе, можно было бы создать такое поле для истинного адреса источника, но это потребовало бы изменения IP-кода на всех машинах по всему Интернету. Это не лучший выход, особенно если мы хотим найти быстрое решение проблемы нехватки IP-адресов.

На самом деле произошло вот что. Разработчики NAT подметили, что большая часть полезной нагрузки IP-пакетов - это либо TCP, либо UDP . Оба формата имеют заголовки, содержащие номера портов источника и приемника. Номера портов представляют собой 16-разрядные целые числа, показывающие, где начинается и где заканчивается TCP-соединение. Место хранения номеров портов используется в качестве поля, необходимого для работы NAT.

Когда процесс желает установить TCP-соединение с удаленным процессом, он связывается со свободным TCP-портом на собственном компьютере. Этот порт становится портом источника, который сообщает TCP-коду информацию о том, куда направлять пакеты данного соединения. Процесс также определяет порт назначения. Посредством порта назначения сообщается, кому отдать пакет на удаленной стороне. Порты с 0 по 1023 зарезервированы для хорошо известных сервисов. Например, 80-й порт используется веб-серверами, соответственно, на них могут ориентироваться удаленные клиенты. Каждое исходящее сообщение TCP содержит информацию о порте источника и порте назначения. Вместе они служат для идентификации процессов на обоих концах, использующих соединение.

Проведем аналогию, которая несколько прояснит принцип использования портов. Допустим, у компании есть один общий телефонный номер. Когда люди набирают его, они слышат голос оператора, который спрашивает, с кем именно они хотели бы соединиться, и подключают их к соответствующему добавочному телефонному номеру. Основной телефонный номер является аналогией IP-адреса компании, а добавочные на обоих концах аналогичны портам. Для адресации портов используется 16-битное поле, которое идентифицирует процесс, получающий входящий пакет.

С помощью поля Порт источника мы можем решить проблему отображения адресов. Когда исходящий пакет приходит в NAT-блок, адрес источника вида 192.168.c.d заменяется настоящим IP-адресом. Кроме того, поле Порт источника TCP заменяется индексом таблицы перевода NAT-блока, содержащей 65 536 записей. Каждая запись содержит исходный IP-адрес и номер исходного порта. Наконец, пересчитываются и вставляются в пакет контрольные суммы заголовков TCP и IP. Необходимо заменять поле Порт источника, потому что машины с местными адресами 10.0.0.1 и 10.0.0.2 могут случайно пожелать воспользоваться одним и тем же портом (5000-м, например). Так что для однозначной идентификации процесса отправителя одного поля Порт источника оказывается недостаточно.

Когда пакет прибывает на NAT-блок со стороны провайдера, извлекается значение поля Порт источника заголовка TCP. Оно используется в качестве индекса таблицы отображения NAT-блока. По найденной в этой таблице записи определяются внутренний IP-адрес и настоящий Порт источника TCP. Эти два значения вставляются в пакет. Затем заново подсчитываются контрольные суммы TCP и IP. Пакет передается на главный маршрутизатор компании для нормальной доставки с адресом вида 192.168.y.z.

В случае применения ADSL или кабельного Интернета трансляция сетевых адресов может применяться для облегчения борьбы с нехваткой адресов. Присваиваемые пользователям адреса имеют вид 10.x.y.z. Как только пакет покидает пределы владений провайдера и уходит в Интернет, он попадает в NAT-блок, который преобразует внутренний адрес в реальный IP-адрес провайдера. На обратном пути выполняется обратная операция. В этом смысле для всего остального Интернета провайдер со своими клиентами, использующими ADSL и кабельное:оединение, представляется в виде одной большой компании.

Хотя описанная выше схема частично решает проблему нехватки IP-адресов, многие приверженцы IP рассматривают NAT как некую заразу, распространяющуюся по Земле. И их можно понять.

Во-первых, сам принцип трансляции сетевых адресов никак не вписывается в архитектуру IP, которая подразумевает, что каждый IP-адрес уникальным образом идентифицирует только одну машину в мире. Вся программная структура Интернета построена на использовании этого факта. При трансляции сетевых адресов получается, что тысячи машин могут (и так происходит в действительности) иметь адрес 10.0.0.1.

Во-вторых, NAT превращает Интернет из сети без установления соединения в нечто подобное сети, ориентированной на соединение. Проблема в том, что NAT-блок должен поддерживать таблицу отображения для всех соединений, проходящих через него. Запоминать состояние соединения - дело сетей, ориентированных на соединение, но никак не сетей без установления соединений. Если NAT-блок ломается и теряются его таблицы отображения, то про все TCP-соединения, проходящие через него, можно забыть. При отсутствии трансляции сетевых адресов выход из строя маршрутизатора не оказывает никакого эффекта на деятельность TCP. Отправляющий процесс просто выжидает несколько секунд и посылает заново все неподтвержденные пакеты. При использовании NAT Интернет становится таким же восприимчивым к сбоям, как сеть с коммутацией каналов.

В-третьих, NAT нарушает одно из фундаментальных правил построения многоуровневых протоколов: уровень k не должен строить никаких предположений относительно того, что именно уровень k + 1 поместил в поле полезной нагрузки. Этот принцип определяет независимость уровней друг от друга. Если когда-нибудь на смену TCP придет ТСР-2, у которого будет другой формат заголовка (например, 32-битная адресация портов), то трансляция сетевых адресов потерпит фиаско. Вся идея многоуровневых протоколов состоит в том, чтобы изменения в одном из уровней никак не могли повлиять на остальные уровни. NAT разрушает эту независимость.

В-четвертых, процессы в Интернете вовсе не обязаны использовать только TCP или UDP. Если пользователь машины А решит придумать новый протокол транспортного уровня для общения с пользователем машины В (это может быть сделано, например, для какого-нибудь мультимедийного приложения), то ему придется как-то бороться с тем, что NAT-блок не сможет корректно обработать поле Порт источника TCP.

В-пятых, некоторые приложения вставляют IP-адреса в текст сообщений. Получатель извлекает их оттуда и затем обрабатывает. Так как NAT не знает ничего про такой способ адресации, он не сможет корректно обработать пакеты, и любые попытки использования этих адресов удаленной стороной приведут к неудаче. Протокол передачи файлов, FTP (File Transfer Protocol), использует именно такой метод и может отказаться работать при трансляции сетевых адресов, если только не будут приняты специальные меры. Протокол интернет-телефонии Н.323 также обладает подобным свойством. Можно улучшить метод NAT и заставить его корректно работать с Н.323, но невозможно же дорабатывать его всякий раз, когда появляется новое приложение.

В-шестых, поскольку поле Порт источника является 16-разрядным, то на один IP-адрес может быть отображено примерно 65 536 местных адресов машин. На самом деле это число несколько меньше: первые 4096 портов зарезервированы для служебных нужд. В общем, если есть несколько IP-адресов, то каждый из них может поддерживать до 61 440 местных адресов.

Эти и другие проблемы, связанные с трансляцией сетевых адресов, обсуждаются в RFC 2993. Обычно противники использования NAT говорят, что решение проблемы нехватки IP-адресов путем создания временной заплатки только мешает процессу настоящей эволюции, заключающемуся в переходе на IPv6. Но если вернутся в реальность, то мы увидим, что в большинстве случаев NAT - это просто незаменимая вещь, особенно для малых офисов с числом компьютеров от нескольких штук до нескольких десятков. NAT можно реализовать собственными силами в OS Linux используя

2 32 или 4 294 967 296 IPv4 адресов это много? Кажется, что да. Однако с распространением персональных вычислений, мобильных устройств и быстрым ростом интернета вскоре стало очевидно, что 4,3 миллиарда адресов IPv4 будет недостаточно. Долгосрочным решением было IPv6 , но требовались более быстрое решение для устранения нехватки адресов. И этим решением стал NAT (Network Address Translation) .

Что такое NAT

Сети обычно проектируются с использованием частных IP адресов. Это адреса 10.0.0.0/8, 172.16.0.0/12 и 192.168.0.0/16 . Эти частные адреса используются внутри организации или площадки, чтобы позволить устройствам общаться локально, и они не маршрутизируются в интернете. Чтобы позволить устройству с приватным IPv4-адресом обращаться к устройствам и ресурсам за пределами локальной сети, приватный адрес сначала должен быть переведен на общедоступный публичный адрес.

И вот как раз NAT переводит приватные адреса, в общедоступные. Это позволяет устройству с частным адресом IPv4 обращаться к ресурсам за пределами его частной сети. NAT в сочетании с частными адресами IPv4 оказался полезным методом сохранения общедоступных IPv4-адресов. Один общедоступный IPv4-адрес может быть использован сотнями, даже тысячами устройств, каждый из которых имеет частный IPv4-адрес. NAT имеет дополнительное преимущество, заключающееся в добавлении степени конфиденциальности и безопасности в сеть, поскольку он скрывает внутренние IPv4-адреса из внешних сетей.

Маршрутизаторы с поддержкой NAT могут быть настроены с одним или несколькими действительными общедоступными IPv4-адресами. Эти общедоступные адреса называются пулом NAT. Когда устройство из внутренней сети отправляет трафик из сети наружу, то маршрутизатор с поддержкой NAT переводит внутренний IPv4-адрес устройства на общедоступный адрес из пула NAT. Для внешних устройств весь трафик, входящий и выходящий из сети, выглядит имеющим общедоступный IPv4 адрес.

Маршрутизатор NAT обычно работает на границе Stub -сети. Stub-сеть – это тупиковая сеть, которая имеет одно соединение с соседней сетью, один вход и выход из сети.

Когда устройство внутри Stub-сети хочет связываться с устройством за пределами своей сети, пакет пересылается пограничному маршрутизатору, и он выполняет NAT-процесс, переводя внутренний частный адрес устройства на публичный, внешний, маршрутизируемый адрес.

Терминология NAT

В терминологии NAT внутренняя сеть представляет собой набор сетей, подлежащих переводу. Внешняя сеть относится ко всем другим сетям.

При использовании NAT, адреса IPv4 имеют разные обозначения, основанные на том, находятся ли они в частной сети или в общедоступной сети (в интернете), и является ли трафик входящим или исходящим.

NAT включает в себя четыре типа адресов:

  • Внутренний локальный адрес (Inside local address) ;
  • Внутренний глобальный адрес (Inside global address) ;
  • Внешний местный адрес (Outside local address) ;
  • Внешний глобальный адрес (Outside global address) ;

При определении того, какой тип адреса используется, важно помнить, что терминология NAT всегда применяется с точки зрения устройства с транслированным адресом:

  • Внутренний адрес (Inside address) - адрес устройства, которое транслируется NAT;
  • Внешний адрес (Outside address) - адрес устройства назначения;
  • Локальный адрес (Local address) - это любой адрес, который отображается во внутренней части сети;
  • Глобальный адрес (Global address) - это любой адрес, который отображается во внешней части сети;

Рассмотрим это на примере схемы.


На рисунке ПК имеет внутренний локальный (Inside local ) адрес 192.168.1.5 и с его точки зрения веб-сервер имеет внешний (outside ) адрес 208.141.17.4. Когда с ПК отправляются пакеты на глобальный адрес веб-сервера, внутренний локальный (Inside local ) адрес ПК транслируется в 208.141.16.5 (inside global ). Адрес внешнего устройства обычно не переводится, поскольку он является общедоступным адресом IPv4.

Стоит заметить, что ПК имеет разные локальные и глобальные адреса, тогда как веб-сервер имеет одинаковый публичный IP адрес. С его точки зрения трафик, исходящий из ПК поступает с внутреннего глобального адреса 208.141.16.5. Маршрутизатор с NAT является точкой демаркации между внутренней и внешней сетями и между локальными и глобальными адресами.

Термины, inside и outside , объединены с терминами local и global , чтобы ссылаться на конкретные адреса. На рисунке маршрутизатор настроен на предоставление NAT и имеет пул общедоступных адресов для назначения внутренним хостам.

На рисунке показано как трафик отправляется с внутреннего ПК на внешний веб-сервер, через маршрутизатор с поддержкой NAT, и высылается и переводится в обратную сторону.


Внутренний локальный адрес (Inside local address ) - адрес источника, видимый из внутренней сети. На рисунке адрес 192.168.1.5 присвоен ПК – это и есть его внутренний локальный адрес.

Внутренний глобальный адрес (Inside global address ) - адрес источника, видимый из внешней сети. На рисунке, когда трафик с ПК отправляется на веб-сервер по адресу 208.141.17.4, маршрутизатор переводит внутренний локальный адрес (Inside local address ) на внутренний глобальный адрес (Inside global address ). В этом случае роутер изменяет адрес источника IPv4 с 192.168.1.5 на 208.141.16.5.

Внешний глобальный адрес (Outside global address ) - адрес адресата, видимый из внешней сети. Это глобально маршрутизируемый IPv4-адрес, назначенный хосту в Интернете. На схеме веб-сервер доступен по адресу 208.141.17.4. Чаще всего внешние локальные и внешние глобальные адреса одинаковы.

Внешний локальный адрес (Outside local address ) - адрес получателя, видимый из внутренней сети. В этом примере ПК отправляет трафик на веб-сервер по адресу 208.141.17.4

Рассмотрим весь путь прохождения пакета. ПК с адресом 192.168.1.5 пытается установить связь с веб-сервером 208.141.17.4. Когда пакет прибывает в маршрутизатор с поддержкой NAT, он считывает IPv4 адрес назначения пакета, чтобы определить, соответствует ли пакет критериям, указанным для перевода. В этом пример исходный адрес соответствует критериям и переводится с 192.168.1.5 (Inside local address ) на 208.141.16.5. (Inside global address ). Роутер добавляет это сопоставление локального в глобальный адрес в таблицу NAT и отправляет пакет с переведенным адресом источника в пункт назначения. Веб-сервер отвечает пакетом, адресованным внутреннему глобальному адресу ПК (208.141.16.5). Роутер получает пакет с адресом назначения 208.141.16.5 и проверяет таблицу NAT, в которой находит запись для этого сопоставления. Он использует эту информацию и переводит обратно внутренний глобальный адрес (208.141.16.5) на внутренний локальный адрес (192.168.1.5), и пакет перенаправляется в сторону ПК.

Типы NAT

Существует три типа трансляции NAT:

  • Статическая адресная трансляция (Static NAT) - сопоставление адресов один к одному между локальными и глобальными адресами;
  • Динамическая адресная трансляция (Dynamic NAT) - сопоставление адресов “многие ко многим” между локальными и глобальными адресами;
  • Port Address Translation (NAT) - многоадресное сопоставление адресов между локальными и глобальными адресами c использованием портов. Также этот метод известен как NAT Overload ;

Статический NAT использует сопоставление локальных и глобальных адресов один к одному. Эти сопоставления настраиваются администратором сети и остаются постоянными. Когда устройства отправляют трафик в Интернет, их внутренние локальные адреса переводятся в настроенные внутренние глобальные адреса. Для внешних сетей эти устройства имеют общедоступные IPv4-адреса. Статический NAT особенно полезен для веб-серверов или устройств, которые должны иметь согласованный адрес, доступный из Интернета, как например веб-сервер компании. Статический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя.

Статическая NAT таблица выглядит так:


Динамический NAT использует пул публичных адресов и назначает их по принципу «первым пришел, первым обслужен». Когда внутреннее устройство запрашивает доступ к внешней сети, динамический NAT назначает доступный общедоступный IPv4-адрес из пула. Подобно статическому NAT, динамический NAT требует наличия достаточного количества общедоступных адресов для удовлетворения общего количества одновременных сеансов пользователя.

Динамическая NAT таблица выглядит так:


Port Address Translation (PAT)

PAT транслирует несколько частных адресов на один или несколько общедоступных адресов. Это то, что делают большинство домашних маршрутизаторов. Интернет-провайдер назначает один адрес маршрутизатору, но несколько членов семьи могут одновременно получать доступ к Интернету. Это наиболее распространенная форма NAT.

С помощью PAT несколько адресов могут быть сопоставлены с одним или несколькими адресами, поскольку каждый частный адрес также отслеживается номером порта. Когда устройство инициирует сеанс TCP/IP , оно генерирует значение порта источника TCP или UDP для уникальной идентификации сеанса. Когда NAT-маршрутизатор получает пакет от клиента, он использует номер своего исходного порта, чтобы однозначно идентифицировать конкретный перевод NAT. PAT гарантирует, что устройства используют разный номер порта TCP для каждого сеанса. Когда ответ возвращается с сервера, номер порта источника, который становится номером порта назначения в обратном пути, определяет, какое устройство маршрутизатор перенаправляет пакеты.

Картинка иллюстрирует процесс PAT. PAT добавляет уникальные номера портов источника во внутренний глобальный адрес, чтобы различать переводы.


Поскольку маршрутизатор обрабатывает каждый пакет, он использует номер порта (1331 и 1555, в этом примере), чтобы идентифицировать устройство, с которого выслан пакет.

Адрес источника (Source Address ) - это внутренний локальный адрес с добавленным номером порта, назначенным TCP/IP. Адрес назначения (Destination Address ) - это внешний локальный адрес с добавленным номером служебного порта. В этом примере порт службы 80: HTTP.

Для исходного адреса маршрутизатор переводит внутренний локальный адрес во внутренний глобальный адрес с добавленным номером порта. Адрес назначения не изменяется, но теперь он называется внешним глобальным IP-адресом. Когда веб-сервер отвечает, путь обратный.

В этом примере номера портов клиента 1331 и 1555 не изменялись на маршрутизаторе с NAT. Это не очень вероятный сценарий, потому что есть хорошая вероятность того, что эти номера портов уже были прикреплены к другим активным сеансам. PAT пытается сохранить исходный порт источника. Однако, если исходный порт источника уже используется, PAT назначает первый доступный номер порта, начиная с начала соответствующей группы портов 0-511, 512-1023 или 1024-65535 . Когда портов больше нет, и в пуле адресов имеется более одного внешнего адреса, PAT переходит на следующий адрес, чтобы попытаться выделить исходный порт источника. Этот процесс продолжается до тех пор, пока не будет доступных портов или внешних IP-адресов.

То есть если другой хост может выбрать тот же номер порта 1444. Это приемлемо для внутреннего адреса, потому что хосты имеют уникальные частные IP-адреса. Однако на маршрутизаторе NAT номера портов должны быть изменены - в противном случае пакеты из двух разных хостов выйдут из него с тем же адресом источника. Поэтому PAT назначает следующий доступный порт (1445) на второй адрес хоста.

Подведем итоги в сравнении NAT и PAT. Как видно из таблиц, NAT переводит IPv4-адреса на основе 1:1 между частными адресами IPv4 и общедоступными IPv4-адресами. Однако PAT изменяет как сам адрес, так и номер порта. NAT перенаправляет входящие пакеты на их внутренний адрес, ориентируясь на входящий IP адрес источника, заданный хостом в общедоступной сети, а с PAT обычно имеется только один или очень мало публично открытых IPv4-адресов, и входящие пакеты перенаправляются, ориентируясь на NAT таблицу маршрутизатора.

А что относительно пакетов IPv4, содержащих данные, отличные от TCP или UDP? Эти пакеты не содержат номер порта уровня 4. PAT переводит наиболее распространенные протоколы, переносимые IPv4, которые не используют TCP или UDP в качестве протокола транспортного уровня. Наиболее распространенными из них являются ICMPv4. Каждый из этих типов протоколов по-разному обрабатывается PAT. Например, сообщения запроса ICMPv4, эхо-запросы и ответы включают идентификатор запроса Query ID . ICMPv4 использует Query ID. для идентификации эхо-запроса с соответствующим ответом. Идентификатор запроса увеличивается с каждым отправленным эхо-запросом. PAT использует идентификатор запроса вместо номера порта уровня 4.

Преимущества и недостатки NAT

NAT предоставляет множество преимуществ, в том числе:

  • NAT сохраняет зарегистрированную схему адресации, разрешая приватизацию интрасетей. При PAT внутренние хосты могут совместно использовать один общедоступный IPv4-адрес для всех внешних коммуникаций. В этом типе конфигурации требуется очень мало внешних адресов для поддержки многих внутренних хостов;
  • NAT повышает гибкость соединений с общедоступной сетью. Многочисленные пулы, пулы резервного копирования и пулы балансировки нагрузки могут быть реализованы для обеспечения надежных общедоступных сетевых подключений;
  • NAT обеспечивает согласованность для внутренних схем адресации сети. В сети, не использующей частные IPv4-адреса и NAT, изменение общей схемы адресов IPv4 требует переадресации всех хостов в существующей сети. Стоимость переадресации хостов может быть значительной. NAT позволяет существующей частной адресной схеме IPv4 оставаться, позволяя легко изменять новую схему общедоступной адресации. Это означает, что организация может менять провайдеров и не нужно менять ни одного из своих внутренних клиентов;

  • NAT обеспечивает сетевую безопасность. Поскольку частные сети не рекламируют свои адреса или внутреннюю топологию, они остаются достаточно надежными при использовании в сочетании с NAT для получения контролируемого внешнего доступа. Однако нужно понимать, что NAT не заменяет фаерволы;

Но у NAT есть некоторые недостатки. Тот факт, что хосты в Интернете, по-видимому, напрямую взаимодействуют с устройством с поддержкой NAT, а не с фактическим хостом внутри частной сети, создает ряд проблем:

  • Один из недостатков использования NAT связан с производительностью сети, особенно для протоколов реального времени, таких как VoIP . NAT увеличивает задержки переключения, потому что перевод каждого адреса IPv4 в заголовках пакетов требует времени;
  • Другим недостатком использования NAT является то, что сквозная адресация теряется. Многие интернет-протоколы и приложения зависят от сквозной адресации от источника до места назначения. Некоторые приложения не работают с NAT. Приложения, которые используют физические адреса, а не квалифицированное доменное имя, не доходят до адресатов, которые транслируются через NAT-маршрутизатор. Иногда эту проблему можно избежать, реализуя статические сопоставления NAT;
  • Также теряется сквозная трассировка IPv4. Сложнее трассировать пакеты, которые подвергаются многочисленным изменениям адресов пакетов в течение нескольких NAT-переходов, что затрудняет поиск и устранение неполадок;
  • Использование NAT также затрудняет протоколы туннелирования, такие как IPsec, поскольку NAT изменяет значения в заголовках, которые мешают проверкам целостности, выполняемым IPsec и другими протоколами туннелирования;
  • Службы, требующие инициирования TCP-соединений из внешней сети, или stateless протоколы, например, использующие UDP, могут быть нарушены. Если маршрутизатор NAT не настроен для поддержки таких протоколов, входящие пакеты не могут достичь своего адресата;

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!

Стремительный рост сети Интернет, в скором времени после ее появления, принес проблема нехватки адресов. Сейчас это частично решается внедрением нового протокола IPv6, который обеспечит в разы больше доступных адресов для сетевых узлов. Но одним обновлением протокола не обойтись. Была придумана технология NAT, которая позволяла узлам из частной сети, подключаться к Интернет, используя всего один внешний ip адрес. Таким образом масштабирование частных локальных сетей стало намного проще, при попытке подключения их к Интернет . Сейчас мы подробно разберем технологию NAT.

Как работает NAT

Давайте для примера представим, что у нас есть локальная сеть, включающая в себя 3 рабочих станции. Мы решили подключить Интернет. Провайдер выделил нам 1 внешний , который мы должны прописать в настройках нашего маршрутизатора. В итоге мы получим следующую картинку.

Наши три компьютера будут объединены в локальную сеть с адресацией "192.168.. "

Вот так это будет выглядеть:

  • Маршрутизатор - 192.168.1.1
  • Компьютер 1 - 192.168.1.2
  • Компьютер 2 - 192.168.1.3
  • Компьютер 3 - 192.168.1.4

Если вы уже знакомы с основами локальных сетей, то должны знать, что в настройках сетевых карт, в поле "Шлюз по умолчанию", для наших компьютеров должно стоять значение 192.168.1.1. Таким образом, все запросы, которые не принадлежат нашей локальной сети, мы должны отправлять на наш маршрутизатор. Проще говоря, все запросы в Интернет, будут перенаправлены на него.

Как мы уже отметили, внешний ip у нас всего один. Вот здесь и начинается самое интересное. Как три компьютера с разными ip-адресами, смогут выходить в интернет, при наличии одного внешнего адреса?

Тут на помощь и придет технология NAT.

Как вы видите, внутри сети все узлы имеют адреса в одной подсети. Это позволяет им реализовать передачу данных. В том случае, если запрос будет направлен в интернет, он будет передан на внутренний интерфейс маршрутизатора. Затем используя технологию NAT, данные будут слегка изменены. Им будет назначен внешний IP адрес. И после этого пакеты уйдут в сеть.

Наверняка вы уже понимаете принцип работы технологии трансляции сетевых адресов. С ее помощью, всем внутренним адресам сети назначается единый внешний адрес. Это позволяет при наличии единственного внешнего адреса, выходить в сеть нескольким компьютерам одновременно.

На что здесь следует обратить внимание. Во первых, не обязательно должен быть всего один внешний адрес. Их может быть несколько.

Во вторых, использование технологии NAT накладывает некоторые ограничения, связанные с блокировкой по IP. Это проявляется при попытке доступа к ресурсу, на котором подключаться можно только одному хосту с одного ip. В том случае, если кто-то из вашей сети уже подключен к нему, вам не удастся установить соединение.

Терминология

Чтобы понимать принцип трансляции сетевых адресов, давайте разберемся с основными терминами.

Это первый тип реализации данной технологии.

При этом, каждый внутренний адрес маршрутизатор переделывает во внешний, ориентируясь на записях в таблице маршрутизации. Соответствия должны быть настроены заранее, во время конфигурирования маршрутизатора.

Настройка на маршрутизаторах Cisco

  • Заходим в настройки интерфейса, который будет находиться во внутренней части сети, и применяем команду ip nat inside
  • Далее для внешнего интерфейса команда ip nat outside
  • Далее в режиме глобальной конфигурации нам нужно вручную задать соответствие для адресов. Используем команду ip nat inside source static inside-local inside-global . Где "inside-local " - внутренний локальный адрес, "inside-global " - внутренний глобальный

Динамическая NAT

Данная реализация схожа со статической трансляцией. Разница в том, что процесс преобразования адресов происходит в динамическом режиме, на основе настроенных ранее параметров. Теперь нет статической таблицы маршрутизации. В таблицу заносятся соответствия, которые активируются в момент передачи пакетов. В том случае, если все настроенные параметры соответствуют.

Для настройки вам нужно задать пул внешних адресов, которые будут использовать для транслирования. А также задать пул внутренних адресов, создав для них новый .

Настройка

  • Задаем ip nat inside для внутренних интерфейсов
  • Ip nat outside для внешних
  • Создаем ACL со списком внутренних адресов, которые должны участвовать в трансляции
  • Создаем пул внешних адресов. В режиме глобального конфигурирования применяем команду ip nat pool name first-address last-address mask subnet mask . Где "name " - имя для пула, "first-address " начальный адрес, "last-address " - последний адрес, "subnet mask " - маска подсети
  • Включаем динамическую трансляцию адресов NAT. ip nat source list acl-number pool pool-name . Где "acl-number " - созданный ранее список контроля доступа, "pool-name " - пул адресов.

PAT - трансляция на основе портов

В любом случае, количество доступных внешних адресов ограничено. Как же еще более масштабировать большую локальную сеть, чтобы получить возможность выхода в интернет всех ее узлов? Уже ясно, что и статическая и динамическая NAT, потребует для этого большое количество внешних адресов. Но этот вариант нам не подходит.

Здесь на помощь приходит третья реализация NAT - трансляция на основе портов PAT. Суть ее в том, что в дополнение к связке "адрес - адрес", добавляется связка "адрес - порт". Таким образом, маршрутизатор может активировать соединение не только с использованием IP-адреса, но и с использованием уникального номера порта.

С учетом того, что для нумерации портов используется 16-бит, то одновременно может быть активно более 65 тысяч соединений.

Настройка

Весь процесс настройки аналогичен конфигурированию динамической маршрутизации. В том случае, если мы хотим включить PAT, нам нужно добавить ключевое слово overload в команду настройки. В итоге она будет выглядеть вот так:

ip nat source list acl-number interface interface name/ number overload

Видео к статье :

Заключение

Использование технологии NAT позволяет реализовать доступ в Интернет, для любой локальной сети. При этот вам понадобится только один внешний IP-адрес. Это наиболее часто используемый вариант - зачастую провайдеры предлагают именно такие тарифы для домашних пользователей, или небольших офисов.

Зачем искать информацию на других сайтах, если все собрано у нас?

  • Пошаговая

Многие пользователи, имея роутер, думают, что он нужен только для того, чтобы подключиться к интернету смогли только они сами. На самом же деле он выполняет ещё и функцию подключения к серверу других пользователей. В этой статье мы расскажем, что такое NAT в маршрутизаторе, для чего он нужен и как его настроить.

NAT в роутере - что это?

Network Address Translation с английского переводится как «трансляция сетевых адресов» - это процесс перевода внутренних адресов во внешние адреса. Если данная функция не будет настроена, то роутер заблокирует доступ к любым портам всем входящим соединениям из глобальной сети Интернет, при настроенных же параметрах – будет разрешать.

Настройка

Чтобы самостоятельно настроить nat в роутере, необходимо выполнить следующий ряд действий:

  • Запустить любой браузер на компьютере и в поисковой строке набрать адрес данного устройства 192.168.1.1 либо 192.168.0.1.
  • Затем ввести логин и пароль Admin/ Admin. После, можно будет заменить данный логин и пароль своими.
  • В открывшемся окне выбрать Настройки - Сеть – Маршрутизация (маршруты) и нажать на Новое правило, которое позволит задать условия маршрутизации любым способом. Бывает пять способов: через DNS имя, через порт, через трансляцию по определённому пользователю, через сетевой интерфейс либо подмену адреса по адресу источника.
  • Далее необходимо задать условия трафика, одним из четырёх предложенных вариантов (Auto, Gateway, Trunk, Interface) и нажать «Далее» и «Закрыть».

После выполнения данного ряда действий, маршрутизатор готов к работе.

Бывают случаи, когда настроить nat нужно и на компьютере. Для этого через «Пуск» следует зайти в «Панель управления» и запустить «Сетевые подключения». Выбрать новое сетевое устройство и кликнуть по нему правой клавишей мышки, в «Свойствах» выбрать «Дополнительно». И установить галочки напротив «Разрешить др. пользователям сети использовать данное подключение» и нажать Ок.

Настройка обратной петли

Смысл обратной петли nat loopback состоит в том, что если пакет попадает из внутренней сети на внешний IP-адрес роутера, он считается пришедшим извне - а значит, работают правила брандмауэра, относящиеся к внешним соединениям. Если же пакет успешно проходит сквозь брандмауэр, то срабатывает nat, который становится посредником между двумя компьютерами, находящимися в внутри одной сети.

Внимание! Без функции nat loopback нельзя было бы узнать о настройках сетевой службы либо зайти на сервер. Для каждого домена необходимо было бы настраивать файл hosts вручную.

Типы nat

Существует несколько типов Network Address Translation. Рассмотрим каждый из них детально:

Важно! Зачастую порты нужно настраивать вручную.

Как изменить тип

Для того чтобы поменять тип NAT с одного на другой необходимо зайти на свой маршрутизатор, введя в поисковой строчке браузера комбинацию 192.168.1.1 либо 192.168.0.1., и ввести свой логин и пароль. Затем посмотреть свой IP адрес и настройки сети своего устройства. После чего необходимо обратиться к провайдеру интернет-подключения, для того чтобы он перенастроил ваш роутер на нужный вам тип. Для этого ему необходимо будет сообщить все данные.

Доброго времени суток, дорогие читатели! Ну, что давайте про NAT .

Сегодня затронем подробнее тему несколько болезненную и довольно непонятную, но более непонятную, чем болезненную.

В большей степени эта проблема касается тех, кто играет в многопользовательские игры и коротко эта проблема звучит примерно так: "ПОЧЕМУ КО МНЕ НИКТО НЕ ЗАХОДИТ?". Для других эта проблема выглядит несколько иначе, а именно:

  • Почему не качает торрент?
  • Почему пользователи/друзья/знакомые/неизвестные личности не могут подключиться к FTP, WEB, VOIP (TS, Mamble , ведро) и прочим серверам, которые вы так долго пытались настроить и даже проверяли что у вас все работает?
  • Почему ваш личный домашний сервер пустует? Может это вселенский заговор?

Но, однако, нет никакого заговора, виновник всех этих бед находится рядом с вами и хитро подмигивает вам лампочками, а зовут его... роутер, да-да, тот самый, который раздает вам интернет на все ваши (и может быть соседские) девайсы.

Если коротко, то пользователи из интернета просто не могут к вам подключиться, потому что ваш роутер их не пускает, но он делает это не просто из прихоти, а потому, что не знает о том, что все эти люди хотят подключиться именно к вам. Вот он и думает, что они что-то хотят от него самого.

Да, только что я вам обрисовал для чего нужен NAT . А теперь о том, что это такое.

Общее определение

NAT (Network Address Translation) - это такой механизм, который позволяет роутеру определять какие сервисы находятся за роутером и должны быть доступны из интернета, чтобы пользователи оттуда могли этими сервисами пользоваться (определение из вики я брать не стал, т.к. оно заумное и не всем понятное).

NAT присутствует во всех роутерах и серверных операционках в том или ином виде. В роутерах это обычно называется port forwarding , в линуксах iptables , на виндовых серверах - в специальной оснастке. А теперь давайте поговорим о различных типах NAT .

Тип первый, Static NAT

Static NAT не требуется для дома, а нужен в том случае, если провайдер выделил несколько IP адресов (внешние или "белые" адреса) вашей компании, и вам нужно, чтобы некоторые серверы всегда были видны из интернета, при этом их адреса бы не менялись.

Т.е. происходит преобразование адресов 1-1 (один внешний IP назначается одному внутреннему серверу). При такой настройке ваши серверы всегда будут доступны из интернета на любом порту.

  • Преимущество такого метода в том, что вы открываете доступ из интернета именно для определенной программы на определенном компьютере/сервере, все остальные порты компьютера/сервера остаются закрытыми;
  • Недостаток в том, что требуется все порты открывать вручную (иногда программы делают это за вас при помощи технологии UPnP , но такое бывает не всегда).

Послесловие

Получилось несколько сумбурно, да и тема довольно непростая, но надеюсь теперь при слове NAT вас не будет бросать в дрожь:)

Как и всегда, если есть какие-то вопросы, мысли, дополнения и всё такое прочее, то добро пожаловать в комментарии к этой записи.

PS : За существование статьи отдельное спасибо другу проекта и члену нашей команды под ником “barn4k“